
TECHNOLOGY IN ACTION™

Beginning C 
for Arduino, 
Second Edition

Jack Purdum, Ph.D.

Learn C Programming for the Arduino



  Beginning C for Arduino, 
Second Edition 

 Learn C Programming 
for the Arduino       

Jack Purdum, Ph.D.    



Beginning C for Arduino, Second Edition: Learn C Programming for the Arduino

Jack Purdum
Ecosoft, Inc. 
Cincinnati, Ohio, USA

ISBN-13 (pbk): 978-1-4842-0941-7 ISBN-13 (electronic): 978-1-4842-0940-0
DOI 10.1007/978-1-4842-0940-0

Library of Congress Control Number: 2015944814

Copyright © 2015 by Jack Purdum, Ph.D.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material 
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, 
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, 
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter 
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly 
analysis or material supplied specifically for the purpose of being entered and executed on a computer system, 
for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only 
under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for 
use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the 
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every 
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial 
fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are 
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to 
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither 
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may 
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Michelle Lowman
Technical Reviewer: Terry King
Editorial Board: Steve Anglin, Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Michelle Lowman, 

James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper,  Douglas Pundick, 
Ben Renow-Clarke, Gwenan Spearing, Steve Weiss

Coordinating Editor: Kevin Walter
Copy Editor: Kimberly Burton-Weisman
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, 
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is 
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation. 

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. 
eBook versions and licenses are also available for most titles. For more information, reference our Special 
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available 
to readers at www.apress.com. For  additional information about how to locate and download your book’s 
source code, go to www.apress.com/source-code/. Readers can also access source code at SpringerLink in the 
Supplementary Material section for each chapter.

Printed on acid-free paper



  To my children: Katie and John  



   



v

Contents at a Glance

About the Author ....................................................................................................xix

About the Technical Reviewer ................................................................................xxi

Acknowledgments ................................................................................................xxiii

Introduction ...........................................................................................................xxv

 ■Chapter 1: Introduction ......................................................................................... 1

 ■Chapter 2: Arduino C  .......................................................................................... 23

 ■Chapter 3: Arduino C Data Types ......................................................................... 45

 ■Chapter 4: Decision Making in C ......................................................................... 69

 ■Chapter 5: Program Loops in C ............................................................................ 97

 ■Chapter 6: Functions in C .................................................................................. 119

 ■Chapter 7: Storage Classes and Scope .............................................................. 143

 ■Chapter 8: Introduction to Pointers ................................................................... 165

 ■Chapter 9: Using Pointers Effectively ................................................................ 197

 ■Chapter 10: Structures, Unions, and Data Storage ............................................ 219

 ■Chapter 11: The C Preprocessor and Bitwise Operations .................................. 253

 ■Chapter 12: Arduino Libraries ........................................................................... 277

 ■Chapter 13: Interfacing to the Outside World .................................................... 299

 ■ Chapter 14: A Gentle Introduction to Object-Oriented 
Programming and C++ ...................................................................................... 321



■ CONTENTS AT A GLANCE

vi

Appendix A: Suppliers and Sources ...................................................................... 339

Appendix B: Electronic Components for Experiments .......................................... 349

Index ..................................................................................................................... 353



vii

 Contents

About the Author ....................................................................................................xix

About the Technical Reviewer ................................................................................xxi

Acknowledgments ................................................................................................xxiii

Introduction ...........................................................................................................xxv

 ■Chapter 1: Introduction ......................................................................................... 1

Why Choose This Book? ................................................................................................... 1

Assumptions About You .................................................................................................... 2

What You Need ................................................................................................................. 3

An Atmel-Based Microcontroller Card .................................................................................................... 3

Types of Memory .................................................................................................................................... 3

Making the Choice ............................................................................................................ 4

Board Size .............................................................................................................................................. 5

Input/Output (I/O) Pins ............................................................................................................................ 6

Breadboard ....................................................................................................................... 6

Miscellaneous Parts ............................................................................................................................... 8

Installing and Verifying the Software ............................................................................... 8

Verifying the Hardware ................................................................................................... 11

Attaching the USB Cable ....................................................................................................................... 11

Selecting Your μc Board in the Integrated Development Environment ................................................. 12

Port Selection ....................................................................................................................................... 12



■ CONTENTS

viii

Loading and Running Your First Program ....................................................................... 16

Writing Your First Program.................................................................................................................... 16

Compiling and Uploading a Program .................................................................................................... 19

Summary ........................................................................................................................ 22

 ■Chapter 2: Arduino C  .......................................................................................... 23

The Building Blocks of All Programming Languages ...................................................... 23

Expressions .......................................................................................................................................... 24

Statements ........................................................................................................................................... 25

Statement Blocks ................................................................................................................................. 26

Function Blocks .................................................................................................................................... 27

The Five Program Steps ................................................................................................. 28

1. Initialization Step .............................................................................................................................. 28

2. Input Step ......................................................................................................................................... 29

3. Process Step ..................................................................................................................................... 29

4. Output Step ....................................................................................................................................... 29

5. Termination Step ............................................................................................................................... 30

The Purpose of the Five Program Steps ............................................................................................... 30

A Revisit to Your First Program ....................................................................................... 30

The setup() Function ............................................................................................................................. 31

The loop() Function ............................................................................................................................... 32

Arduino Program Requirements ........................................................................................................... 34

The Blink Program .......................................................................................................... 34

Program Comments .............................................................................................................................. 35

The setup() Function in Blink ................................................................................................................ 37

The loop() Function ............................................................................................................................... 40

delay(): Good News, Bad News ............................................................................................................. 41

Summary ........................................................................................................................ 42



■ CONTENTS

ix

 ■Chapter 3: Arduino C Data Types ......................................................................... 45

Keywords in C ................................................................................................................ 46

Variable Names in C ....................................................................................................... 47

The boolean Data Type ................................................................................................... 47

Walking Through the Function Call to ReadSwitchState () ................................................................... 48

Binary Numbers .................................................................................................................................... 48

The char Data Type and Character Sets ......................................................................... 49

Generating a Table of ASCII Characters ................................................................................................ 50

The byte Data Type ......................................................................................................... 51

The int Data Type ............................................................................................................ 52

The word Data Type ........................................................................................................ 52

The long Data Type ......................................................................................................... 52

The fl oat and double Data Types .................................................................................... 53

Floating Point Precision ........................................................................................................................ 53

The string Data Type ....................................................................................................... 53

String Data Type ............................................................................................................. 55

Which Is Better: String or strings Built from char Arrays? .................................................................... 56

The void Data Type ......................................................................................................... 57

The array Data Type ........................................................................................................ 58

Array Generalizations ........................................................................................................................... 58

Defi ning vs. Declaring Variables ..................................................................................... 59

Language Errors ................................................................................................................................... 59

Symbol Tables ....................................................................................................................................... 59

lvalues and rvalues ............................................................................................................................... 60

Understanding an Assignment Statement ............................................................................................ 61

The Bucket Analogy .............................................................................................................................. 62

Using the cast Operator .................................................................................................. 64

The Cast Rule ........................................................................................................................................ 65

Summary ........................................................................................................................ 66



■ CONTENTS

x

 ■Chapter 4: Decision Making in C ......................................................................... 69

Relational Operators ....................................................................................................... 69

The if Statement  ............................................................................................................ 70

What if Expression1 Is Logic True? ....................................................................................................... 71

What if Expression1 Is Logic False? ..................................................................................................... 71

Braces or No Braces? ........................................................................................................................... 72

A Modifi ed Blink Program............................................................................................... 72

The Circuit ............................................................................................................................................ 73

Circuit Resistor Values .......................................................................................................................... 74

The Modifi ed Blink Program  ................................................................................................................ 75

Software Modifi cations to the Alternate Blink Program  ................................................ 78

The if-else Statement Block ........................................................................................... 79

Cascading if statements ................................................................................................. 80

The Increment and Decrement Operators ...................................................................... 82

Two Types of Increment Operators (++) ............................................................................................... 82

The switch statement ..................................................................................................... 84

A switch Variation, the Ellipsis Operator ( … ) ...................................................................................... 87

Which to Use: Cascading if-else or switch? ......................................................................................... 88

The goto Statement  ....................................................................................................... 88

Getting Rid of Magic Numbers ....................................................................................... 88

The C Preprocessor ........................................................................................................ 88

Heads or Tails ................................................................................................................. 91

Initialization Step .................................................................................................................................. 91

Input Step ............................................................................................................................................. 91

Process Step ......................................................................................................................................... 91

Output Step ........................................................................................................................................... 91

Termination Step .................................................................................................................................. 92

Summary ........................................................................................................................ 94



■ CONTENTS

xi

 ■Chapter 5: Program Loops in C ............................................................................ 97

The Characteristics of Well-Behaved Loops ................................................................... 97

Condition 1: Initialization of Loop Control Variable ............................................................................... 97

Condition 2: Loop Control Test .............................................................................................................. 98

Condition 3: Changing the Loop Control Variable’s State ...................................................................... 98

Using a for Loop ............................................................................................................. 98

Program to Show Expression Evaluation ...................................................................... 100

When to Use a for Loop ...................................................................................................................... 103

The while Loop ............................................................................................................. 103

When to Use a while Loop .................................................................................................................. 104

The sizeof() Operator .......................................................................................................................... 105

The do-while Loop ........................................................................................................ 106

Why a do-while is Different from a while Loop .................................................................................. 107

The break and continue Keywords ............................................................................... 107

The break Statement .......................................................................................................................... 108

The continue Statement ..................................................................................................................... 109

A Complete Code Example ........................................................................................... 109

Step 1. Initialization ............................................................................................................................ 110

Step 2. Input ....................................................................................................................................... 110

Step 3. Process ................................................................................................................................... 110

Step 4. Output ..................................................................................................................................... 110

Step 5. Termination ............................................................................................................................. 110

Listing 5-5 Is SDC ............................................................................................................................... 112

Getting Rid of a Magic Number .......................................................................................................... 113

Loops and Coding Style ................................................................................................ 114

Portability and Extensibility .......................................................................................... 115

Summary ...................................................................................................................... 116



■ CONTENTS

xii

 ■Chapter 6: Functions in C .................................................................................. 119

The Anatomy of a Function ........................................................................................... 120

Function Type Specifi er ...................................................................................................................... 120

Function Name ................................................................................................................................... 120

Function Arguments ........................................................................................................................... 121

Function Signatures and Function Prototypes .................................................................................... 123

Function Body............................................................................................................... 124

Overloaded Functions ......................................................................................................................... 125

What Makes a “Good” Function ................................................................................... 126

Good Functions Use Task-Oriented Names ......................................................................................... 126

Good Functions Are Cohesive ............................................................................................................. 126

Good Functions Avoid Coupling .......................................................................................................... 126

Writing Your Own Functions ......................................................................................... 127

Function Design Considerations ......................................................................................................... 127

Function Name ................................................................................................................................... 128

Argument List ..................................................................................................................................... 129

Function Body ..................................................................................................................................... 129

Logical Operators ......................................................................................................... 129

Logical AND Operator (&&) .................................................................................................................. 130

Logical OR (||) ...................................................................................................................................... 131

Logical NOT (!) .................................................................................................................................... 131

Writing Your Own Function ........................................................................................... 132

The IsLeapYear() Function and Coding Style ...................................................................................... 133

Why Use a Specifi c Function Style? ................................................................................................... 134

Leap Year Calculation Program .................................................................................... 134

Passing Data into and Back from a Function ............................................................... 137

Pass-by-Value ..................................................................................................................................... 137

Summary ...................................................................................................................... 140



■ CONTENTS

xiii

 ■Chapter 7: Storage Classes and Scope .............................................................. 143

Hiding Your Program Data ............................................................................................ 143

The Three Scope Levels ............................................................................................... 143

Statement Block Scope ...................................................................................................................... 144

Why Use Statement Block Scope? ...................................................................................................... 146

Function Block Scope ................................................................................................... 146

Name Collisions and Scope ................................................................................................................ 147

Global Scope ................................................................................................................ 150

Trade-offs ........................................................................................................................................... 151

Global Scope and Name Confl icts ....................................................................................................... 151

Scope and Storage Classes .......................................................................................... 152

The auto Storage Class ....................................................................................................................... 152

The register Storage Class ................................................................................................................. 152

The static Storage Class ..................................................................................................................... 153

The Effect of the static Storage Class ................................................................................................ 153

The extern Storage Class .................................................................................................................... 154

Adding a Second Source Code File to a Project.................................................................................. 154

Function Prototypes ..................................................................................................... 158

#include Preprocessor Directive .................................................................................. 158

A common #include Idiom .................................................................................................................. 159

Where Are the Header Files Stored? ................................................................................................... 160

The volatile keyword .................................................................................................... 160

Summary ...................................................................................................................... 160

 ■Chapter 8: Introduction to Pointers ................................................................... 165

Defi ning a Pointer ......................................................................................................... 165

Pointer Name ...................................................................................................................................... 166

Asterisk (*) .......................................................................................................................................... 166

Pointer Type Specifi ers and Pointer Scalars ....................................................................................... 166

Why All Arduino Pointers Use Two Bytes for Storage .......................................................................... 168

Pointer Initialization ............................................................................................................................ 169



■ CONTENTS

xiv

Using the Address-Of Operator ........................................................................................................... 170

The Indirection Operator (*) ................................................................................................................ 171

Why Are Pointers Useful? ............................................................................................. 175

Modifi ed Blink Program ................................................................................................ 179

Pointers and Arrays ...................................................................................................... 180

The Importance of Scalars .................................................................................................................. 183

Pass-by-Value vs. Pass-by-Reference ................................................................................................ 185

Your Turn ...................................................................................................................... 188

One Approach ..................................................................................................................................... 189

One Solution ....................................................................................................................................... 189

Debug Statements Using the Serial Object ......................................................................................... 192

Summary ...................................................................................................................... 193

 ■Chapter 9: Using Pointers Effectively ................................................................ 197

Relational Operations and Test for Equality Using Pointers .......................................... 197

Pointer Comparisons Must Be Between Pointers to the Same Data .................................................. 198

Pointer Arithmetic ......................................................................................................... 198

Constant lvalues ................................................................................................................................. 203

Two-Dimensional Arrays ............................................................................................... 203

A Small Improvement ......................................................................................................................... 206

How Many Dimensions? ..................................................................................................................... 206

Two-Dimensional Arrays and Pointers.......................................................................... 207

Treating the Two-Dimensional Array of chars As a String ................................................................... 209

Pointers to Functions ................................................................................................... 209

Arrays of Pointers to Functions .......................................................................................................... 211

enum Data Type .................................................................................................................................. 212

The Right-Left Rule ...................................................................................................... 216

Summary ...................................................................................................................... 217



■ CONTENTS

xv

 ■Chapter 10: Structures, Unions, and Data Storage ............................................ 219

Structures ..................................................................................................................... 219

Declaring a Structure .......................................................................................................................... 220

Defi ning a Structure ........................................................................................................................... 221

Accessing Structure Members ........................................................................................................... 222

Escape Sequences ............................................................................................................................. 224

Memory Requirements for a Structure ............................................................................................... 225

Returning a Structure from a Function Call ........................................................................................ 226

Using Structure Pointers ..................................................................................................................... 228

Initializing a Structure ........................................................................................................................ 231

Arrays of Structures ............................................................................................................................ 231

Unions .......................................................................................................................... 232

EEPROM Memory ......................................................................................................... 233

Using EEPROM .................................................................................................................................... 234

Other Storage Alternatives ........................................................................................... 242

Shields ................................................................................................................................................ 242

typedef ......................................................................................................................... 247

Summary ...................................................................................................................... 248

 ■Chapter 11: The C Preprocessor and Bitwise Operations .................................. 253

Preprocessor Directives ............................................................................................... 253

#undef ................................................................................................................................................ 255

#line .................................................................................................................................................... 256

#if, Conditional Directives ................................................................................................................... 257

#include .............................................................................................................................................. 258

Parameterized Macros ................................................................................................. 259

Decimal to Binary Converter ........................................................................................ 261

Bitwise Operators ............................................................................................................................... 263

Bitwise Shift Operators ....................................................................................................................... 267



■ CONTENTS

xvi

One More Example ....................................................................................................... 268

Using Different Bases for Integer Constants....................................................................................... 269

Parameterized Macros … Continued ................................................................................................. 269

Summary ...................................................................................................................... 270

 ■Chapter 12: Arduino Libraries ........................................................................... 277

The Linker .................................................................................................................... 277

Libraries ....................................................................................................................... 278

Arduino Libraries ................................................................................................................................ 278

The Arduino Core Libraries ................................................................................................................. 280

Other Libraries .................................................................................................................................... 285

Writing Your Own Library .............................................................................................. 287

The Library Header File ...................................................................................................................... 288

The Library Code File (Dates.cpp) ....................................................................................................... 289

Setting the Arduino IDE to Use Your Library ................................................................. 292

A Sample Program Using the Dates Library ................................................................. 292

Adding the Easter Program As Part of the Library .............................................................................. 294

The keywords.txt File ......................................................................................................................... 295

Keyword Coloring (theme.txt) ............................................................................................................. 295

Summary ...................................................................................................................... 297

 ■Chapter 13: Interfacing to the Outside World .................................................... 299

The Serial Peripheral Interface (SPI) ............................................................................ 300

An SPI Program ............................................................................................................ 300

Interrupts and Interrupt Service Routines (ISR)............................................................ 305

Interrupt Details .................................................................................................................................. 307

An External Interrupt Program ............................................................................................................ 308

An Alternative Interrupt Program.................................................................................. 310



■ CONTENTS

xvii

Ultrasonic Sensor Program .......................................................................................... 311

A Programming Problem .............................................................................................. 314

My Solution ......................................................................................................................................... 314

Conclusion .................................................................................................................... 318

 ■ Chapter 14: A Gentle Introduction to Object-Oriented 
Programming and C++ ...................................................................................... 321

The OOP Trilogy ............................................................................................................ 321

Encapsulation ..................................................................................................................................... 321

Inheritance .......................................................................................................................................... 322

Polymorphism ..................................................................................................................................... 323

The OOP Class .............................................................................................................. 323

Inside an OOP Class ............................................................................................................................ 324

OOP and Class Objects ....................................................................................................................... 325

public vs. private in a Class ................................................................................................................ 325

The EEPROM.cpp File ................................................................................................... 327

Add julian() to Dates ..................................................................................................... 329

Adding a private Class Member ................................................................................... 330

Constructors and Destructors ...................................................................................... 332

Conclusion .................................................................................................................... 336

Appendix A: Suppliers and Sources ...................................................................... 339

Starter Kits ................................................................................................................... 339

Shields, Boards, Sensors .............................................................................................. 342

Specifi c Parts Sources ................................................................................................. 347

Bezels ................................................................................................................................................. 347

Jumper Wires...................................................................................................................................... 348

Project Cases ...................................................................................................................................... 348

Domestic Parts Suppliers ................................................................................................................... 348



■ CONTENTS

xviii

Appendix B: Electronic Components for Experiments .......................................... 349

Microcontroller Board ................................................................................................... 349

Solderless Breadboard ................................................................................................. 349

Electronic Components ................................................................................................ 349

Online Component Purchases ...................................................................................... 350

Experiment! .................................................................................................................. 351

Index ..................................................................................................................... 353



xix

    About the Author 

     Jack   Purdum     is a retired professor from Purdue University’s College of 
Technology. Dr. Purdum has authored 18 programming and computer-
related textbooks. He has been involved in university teaching for more 
than 25 years. He continues to contribute to magazines and journals, and 
he has been a frequent speaker at various professional conferences. He 
was the founder and CEO at EcoSoft, Inc., a company that specialized in 
programming tools for the PC. He continues to be actively engaged in 
onsite training and instruction in object-oriented programming analysis 
and design. Dr. Purdum has developed numerous programming and 
teaching methodologies, including the Right-Left Rule, The Bucket 
Analogy, The Five Programming Steps, Sideways Refinement, and code 
benchmarks (Dhampstone); he has been recognized for his teaching 
endeavors. He received his BA from Muskingum University, and his MA 
and PhD degrees from The Ohio State University. 



   



xxi

               About the Technical Reviewer 

     Terry   King     has designed broadcast stations, recording studios, broadcast equipment, intelligent machines, 
and special computer languages for IBM. He has worked as a broadcast journalist covering elections, fires, 
riots, and Woodstock. 

 He has taught electronics at SUNY and IBM, and “Bits&Bytes” at many high schools. 
 Terry received an Outstanding Technical Achievement award from IBM for the software architecture of 

IBM Chip Test systems. 
 He is now “retired” and writing about Arduino/embedded systems (   http://ArduinoInfo.info     ) and 

running YourDuino.com with his friend from China, Jun Peng, and his library designer wife, Mary Alice 
Osborne. Since “retirement,” Terry has lived and taught in Africa, China, the Middle East, and Italy. 
Now he is “home again” in rural Vermont and working 40+ hours a week on ArduinoInfo.info, firewood 
cutting, woodworking, and electronics.      

http://arduinoinfo.info/


   



xxiii

  Acknowledgments  

 No one writes a book in isolation. Perhaps without even knowing it, many people present me with ideas 
for teaching examples, better ways to get a point across to my students, and provide feedback on what 
works and what doesn’t. It’s not uncommon for nonprogramming friends to listen to me explain something 
and ask questions that ultimately points me to the heart of a lucid explanation. I must thank some of these 
people: Jane Holcer, Katie Mohr, John Purdum, Joe and Bev Kack, John Strack, Mike Edwards, and 
Dennis Kidder. I would also like to thank Terry King, the technical editor of this book, for his suggestions 
and keen eye in reviewing this manuscript. I also want to thank all of the vendors in Appendix A, whose 
contributions made it possible to test the programs that appear in this book. Also, many thanks to Kevin Walter, 
Michelle Lowman, and a host of other people at Apress who worked to make this a better book.  



   



xxv

  Introd uction 

   Shortly after Gutenberg’s big breakthrough, I was teaching a graduate-level statistics course and had to have 
a calculator with a square-root function. At the time, the least expensive I could find, even with an educator’s 
discount, cost $150. Now I look down on my desk and see an Arduino Nano that’s about the size of my 
thumb, costs under $5, and has more computing power than some early computers. I can’t imagine where 
things will be 50 years from now. 

 The path I took to this moment in time is different than many of you reading this text. My primary area 
of expertise has been software engineering. However, I have always loved electronics and have dabbled in 
it since I first got my amateur radio license over 60 years ago. Yet, with all of the technological advances that 
are embodied in that thumb-sized board that sits in front of me, it’s little more than a lump of silicon unless 
someone tells it what to do. Programming gives life to lumps of silicon, and I find that power pretty heady 
stuff. 

 The primary goal of this textbook is to teach you the C programming language as it exists in the 
Arduino integrated development environment (IDE). I just Googled “Arduino C programming books” and 
got 1.1  million  hits! Some people are probably rolling their eyes, thinking: “Just what we need … another C 
programming book.” I hope to convince you over the ensuing pages that this book is different. 

 First, many C programming texts designed for the Arduino environment relegate programming to the 
back seat, concentrating instead on the electronics. Indeed, some give you the feeling that programming is 
a necessary evil you must work through to get to the good stuff. Not this text. The truth remains that so-so 
software is doomed to produce so-so results with the hardware. Crafting good software can be every bit as 
rewarding as a well-engineered piece of hardware. 

 A second factor that makes this book different is my teaching experience. I had a programmer work 
for me who was perhaps the most gifted programmer I know. One summer I assigned an intern to him and, 
within a week, she quit in tears, saying he was impossible to work with—let alone learn something from 
him. Just because you are a brilliant programmer doesn’t mean you can impart that knowledge to others. It’s 
not until you have 150 sets of eyes staring at you like a deer in the headlights that can you appreciate what 
you thought was a great way to explain something obviously isn’t. This trial-and-error process of teaching 
for more than 25 years has helped me develop techniques that lift students over the most likely stumbling 
blocks. 

 Finally, teaching programming does not have to be a dry or boring process. I have tried to make this 
text read as though you and I are talking face-to-face about programming. Although you are the final judge, I 
hope you come away with the enjoyment and appreciation for programming that I have. The power to make 
a piece of hardware dance beautifully to your commands is most addicting. 

   Assumptions About You 
 First, I am going to assume that you do not have to master C by next week. A major reason students who 
try to learn on their own fail is because they don’t invest the time it takes to truly absorb the material being 
presented. You  must  take the time to type in the sample programs and run them yourself. This also means 
really working through the exercises at the end of the chapters. There are little programming nuggets to be 
learned from those exercises, and you owe it to yourself to ferret out those nuggets. 



 Second, maximize your learning experience means you  must  invest in the hardware necessary to test 
your code. I have tried to minimize the hardware necessary to write the programs in this book. Other than 
for the projects in Chapter   13    , an Arduino board, a breadboard, a couple of LEDs, a few resistors, and some 
wire is all you need. 

 Third, I realize that many of you have some project in mind and that’s the primary reason you are 
reading this book. You’ll have a temptation to skip ahead to try and find out why your project isn’t working. 
Don’t. The sequencing of chapters and their content is such that each chapter builds on those that precede 
it. You need a strong foundation to build a solid understanding, and that means reading all of the chapters in 
the sequence in which they are presented. 

 Finally, take the time to enjoy the journey. If I say, “Think about it,” I mean for you to really stop and 
think about what you just read. If you just finished reading some topic, perhaps how to write a  for  loop, 
stop and take the time to write a simple program of your own design to use a  for  loop. While you may think 
this will slow you down, it will actually speed up the learning process. Mentally telling yourself “I got that!” 
and actually writing your own program to implement the concept are two entirely different animals. As 
mentioned earlier, make sure you do the exercises at the end of the chapters. I didn’t take the time to write 
those just to kill off a few extra trees. Try to answer them without looking at my solution. One of the neat 
things about programming is that there is more than one correct answer.  

   Resources 
 There are many places where you can go for additional help if you feel you need it. If you have a particular 
area of interest or question, your first stop should be a Google search. In most cases, just prefixing a 
Google search on the area of interest with the word “Arduino” (e.g., Arduino  for  loops) will produce many 
supplemental resources for you to investigate. Apress also has a number of electronics books that can be 
used to supplement this book. 

 Appendix A has a number of suggestions as to where to purchase various hardware components. In this 
edition, I have listed a number of Arduino “starter kits” that contain everything you need to test every project 
in this book. 

 The Arduino web site has numerous forums that can provide answers to many of the questions you 
might have. You can find the major topic areas at    http://forum.arduino.cc/index.php     . 

 I find that students find the “Programming Questions” forum especially useful. Because the Arduino 
IDE is an open source platform (i.e., people sharing ideas and resources), there are always people reading 
the forums who are willing to help. Just make sure you read any posting guidelines that appear at the top of 
the forum before posting your question. In the spirit of open source software and hardware, if you find some 
unique way of solving a problem, make a post of your own to a forum and give back to the community. 

 Finally, full-color images for all figures included in the print edition can be found in this book’s source 
code bundle, which is available through    www.apress.com     . You can visit    www.apress.com/source-code      for 
more information on how to locate the source code. 

 Okay … enough of this. Let’s start our journey to learn C.…   

■ INTRODUCTION

xxvi

http://dx.doi.org/10.1007/978-1-4842-0940-0_13
http://forum.arduino.cc/index.php
http://www.apress.com/
http://www.apress.com/source-code


1© Jack Purdum 2015 
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming 
for the Arduino, DOI 10.1007/978-1-4842-0940-0_1

    CHAPTER 1   

 Introduction            

 There is one primary goal for this book: to teach you how to use the C programming language. The 
environment for reaching that goal is the Atmel family of microcontrollers. While C can be used to program 
other microcontrollers, our emphasis is on the Atmel controllers. Given that there are probably a bazillion C 
programming books available to you, why should you choose this one? Good question, and there’s no single 
answer. However, I can give you some facts that might help with making your decision. 

 First, this book is specifically written for the Arduino family of microcontroller boards using the 
Atmel family of microcontroller chips. As such, the book is couched within the framework of an integrated 
development environment (IDE) that is available as a free Internet download. An  IDE  is a single program 
that combines all of the functions required to progress from the C language source code you are writing to 
an executable program. In essence, an IDE is a text editor, compiler, assembler, and linker all rolled into 
one program. Having the free Arduino IDE means you will not have to buy additional programming tools 
to learn C. 

 Second, the implementation of C provided with the IDE is not quite a full American National Standards 
Institute (ANSI) implementation of the C programming language. This implementation of the C language, 
which I will henceforth call Arduino C, is a robust, and virtually complete, subset of ANSI C. (The most 
obvious missing feature is the  double  data type, although  float  is supported.) In fact, the underling compiler 
you will be using throughout this book is the open source C++ compiler (GCC), which is full-featured. You 
will learn more about the language features available to you as we proceed through the book. 

     Why Choose This Book? 
 Even in light of the considerations mentioned, there are still probably dozens of books that cover Arduino C. 
So, why choose this book over the dozens that remain available to you? 

 First, this is a programming book and that is where the emphasis is. True, there are some small 
hardware projects to exercise your code, but the real purpose of the projects is to test your understanding 
of the C programming language—not the hardware. Once you have mastered C, Apress has a family 
of books that are centered on the Arduino microcontroller that you may use to extend your hardware 
expertise. 

 Second, I will take you “under the hood” of the C language, so you gain a much deeper understanding 
of what the code is doing and how it is done. This knowledge is especially useful in a programming 
environment where you have only a few pico-acres of memory available to you. There are those who say you 
really don’t have to understand a language with any real detail to use it. To reinforce their argument, I have 
often heard the comment: “You don’t have to know how to build a car to drive one.” True, but if your car 

 Electronic supplementary material The online version of this chapter (doi:  10.1007/978-1-4842-0940-0_1    ) 
contains supplementary material, which is available to authorized users. 

http://dx.doi.org/10.1007/978-1-4842-0940-0_1


CHAPTER 1 ■ INTRODUCTION

2

breaks down 200 miles north of Yellowknife, NWT, I’ll bet you’d wish you had a better understanding of the 
details that make a car tick. The same is true for programming. The better you understanding what is going 
on with the language, the quicker you will be able to detect, isolate, and fix program bugs. (A program  bug  
is an error in the program that prevents it from performing its designed task correctly.) Also, there are often 
multiple solutions possible for any given programming problem. A little depth of understanding frequently 
yields a more efficient and unbreakable, yet elegant, solution. 

 Third, since I first began using C in 1977, I have gained a lot of commercial programming experience 
with C that just might come in handy. My software company produced C compilers and other development 
tools for the early PCs back in the 1980s. Also, I wrote my first C programming book more than 30 years 
ago. Still, the biggest advantage that has some worth to you is my teaching experience. Honestly, there are 
likely thousands of programmers who can code circles around me. Indeed, one of my employees was such 
a person. However, to be a good author, it matters little how good you are as a programmer or an engineer if 
you cannot convey that experience to others. 

 I have more than 30 years of university-level teaching experience, and I know where you are most likely 
to stumble in our upcoming journey. The bad news is that you  will  stumble along the way. The good news 
is that there have been thousands before you who have stumbled on exactly the same concepts, and I have 
managed to develop effective teaching methods to overcome most (all?) of them. I also think you will find 
the book’s style both engaging and informative. 

 Finally, I genuinely enjoy programming with the C language. Of all the different languages I have 
used since I first began programming in the late 1960s, C remains my favorite. It is a concise, yet powerful, 
language well suited for microcontroller work. I think you’re going to like it, too. 

 This chapter details what you need to use this book effectively, including some comments about the 
expectations I have about you. You will learn about some of the features that different Arduino-compatible 
boards have, their approximate cost, and where they can be purchased. Also, there are many Arduino 
Starter Kits available now and they are a wonderful way to get started because they usually contain the 
Arduino board plus numerous electronic components with which you can experiment. (Details about some 
suppliers can be found in Appendix A.) Suggestions are also made about some additional hardware items 
you may wish to purchase. The chapter then tells you where and how to download and install the IDE for 
the Arduino IDE. The chapter closes out with a short C program to verify that the IDE installation went as 
expected. When you finish reading this chapter, you will have a good understanding of what you need to 
use this book effectively.  

     Assumptions About You 
 Clearly, I’m targeting this book for a specific reader. In so doing, I have made certain assumptions about 
that reader:  I assume the reader knows absolutely nothing about C or programming in general.  In fact, I 
hope you don’t know anything. That way, you can start with a clean slate. Often, someone who knows some 
programming aspects brings along a lot of bad habits or ill-conceived practices that need to be “unlearned.” 
Starting off with no programming experience is, in this case, a very good thing. 

 I assume you know nothing about electronics. Indeed, this book is not meant to be an electronics book. 
However, there are a few hardware concepts used throughout the book, but you will be taught what you need 
to know to make things function properly. If you want to gain a deeper understanding of the electronics, I’d 
suggest finishing this text and then buying one of the other Apress books that targets your specific hardware 
area of interest. 

 I assume you will do the programming exercises found at the end of each chapter. Most of the exercises 
are software-based, meaning they require little or no additional electronic components to complete 
the exercise. Clearly, some hardware is needed to test even a purely software exercise: you must have a 
microcontroller board to type in and run the software in the exercise. This means you need to invest in a 
microcontroller board and some additional components. I’ve made every attempt to keep these component 
costs as low as possible while still demonstrating the point at hand. 



CHAPTER 1 ■ INTRODUCTION

3

 Appendix A presents a list of vendors from whom you can buy various components at reasonable cost. 
Failing that, almost all of the components can be bought from a local Radio Shack outlet. (Alas, Radio Shack 
just filed for bankruptcy.) Appendix B presents a list of the miscellaneous hardware components you will 
need to complete all of the projects in this book. Obviously, some of these components can be ignored if 
certain projects are not attempted. As mentioned earlier, there are some great Arduino experimenter kits 
that not only include an Arduino-compatible board, but also dozens of components and other devices that 
can be used to make some really interesting projects. I especially like the MAKER Version Electronic Brick 
Starter Set from yourduino.com and the Ultimate Kit from oddWires.com. Both kits contain components to 
do all of the exercises in this book, plus many, many more (see Appendix A). 

 Finally, I assume you don’t have to know C by this weekend. That is, I assume you will do the exercises 
and take the time to study and understand the code in the examples before moving on to the next chapter. 
Learning C is a building process whereby the concepts learned in the current chapter become a foundation 
for subsequent chapters. A crumbly understanding of the concepts of one chapter will likely cause a collapse 
of that understanding in later chapters. Take your time, pause and think about what you’re reading, and  do 
the exercises . It’s easy to read something and say “I understand that.” It’s quite another to start with a blank 
page and write a program that uses what you’ve read. Simply stated: Do the exercises. If you try to take 
shortcuts and bypass the exercises, then your depth of knowledge will be less than it would be otherwise. 
Take your time and enjoy the ride.  

     What You Need 
 In addition to this book, there are several things you will need, plus some things you should have but could 
live without. Consider the components and factors discussed in the following sections. 

     An Atmel-Based Microcontroller Card 
 You will need to have access to an Atmel microcontroller board. (Let’s use “ μ c” for “microcontroller” from 
now on.) Atmel produces a wide variety of  μ cs and there are literally dozens of clone boards available. You 
should consider purchasing an Arduino board based on one of those listed in Table  1-1 . So, how do you 
decide which one to purchase? It really depends on what you want to do with the  μ c. If all you want to do 
is blink an LED or control a toaster, then one of the least expensive boards listed in the table probably will 
do just fine. If you are setting up some kind of experiment that must sample several dozen sensors every 
second, then you will probably want to use a  μ c that has a lot of digital and/or analog I/O pins. If your 
application is going to have a lot of program code associated with it, then obviously you should pick one with 
more memory. (Note that 2K to 8K of flash memory is eaten up by the bootloader. A  bootloader  is a small 
program that allows your  μ c to communicate with the outside world, so plan accordingly.)  

 The Arduino IDE is run on your PC, so most of the actual program development takes place on your PC. 
When you think the program code is in a state that can be tested, you compile and “upload” your code to the 
 μ c via a USB cable connected between your PC to the  μ c. 

 Most  μ c boards are shipped with the required USB (A to B) cable. If your board did not include one, often 
you can steal your printer cable and use it until you can find a replacement. Also note that some boards do not 
have a USB connector on the board. While these boards are less expensive, they require an external programming 
interface, which is less convenient. For the time being, only consider a board that has a USB connector on it. 
Again, look online for the USB cables and you should be able to buy one for less than a few dollars.  

     Types of Memory 
 With regard to memory, you will want to consider what’s outlined in the following sections. 



CHAPTER 1 ■ INTRODUCTION

4

   Flash Memory 
 The programs you develop using this book are written on your PC. When you have the program code to a 
point where you think it is ready to test, you upload that program code from your PC to the  μ c board via the 
USB connection. The program code is stored in the Arduino’s flash memory.  Flash memory  is nonvolatile, 
which means that, even if you disconnect the board from its power source, the contents of the flash memory 
remain intact. It is probably obvious that your program must fit within the limits imposed by the amount of 
flash memory on your Arduino board. 

 As mentioned, 2K to 8K of flash memory is used for the software (i.e., the bootloader) that allows your 
program to communicate with the outside world, including your PC. Therefore, if your Arduino has 32K 
of flash memory, your program code actually must be less than 24K to 30K in size, depending on the size 
of your bootloader code. Also, flash memory has a finite life in terms of the number of times that you can 
rewrite it reliably before it gets a little flaky. Most set the safe write cycle at 100,000 writes. So, according to 
the documentation, if you save the program 10 times a day, you only have 27 years of reliability available 
to you.  

   SRAM 
 Simply stated, the static random-access memory (SRAM) is where your program variables (data) get stored 
during program execution. You should assume that the data stored in SRAM is lost when power is removed 
from the controller board. 

 Because SRAM is used to pass data back and forth between functions, creating temporary variables as 
the program executes, SRAM plays an important limiting factor in the amount of data your programs can 
use. I will have more to say about this in later chapters, but for now, the more SRAM, the better.  

   EEPROM 
 Electrically Erasable Programmable Read-Only Memory (EEPROM) is an area of nonvolatile memory where 
one often stores data that needs to be retrievable each time the program is run. Like flash memory, data 
values stored in EEPROM survive power removal. 

 However, EEPROM has two drawbacks when compared to flash memory: it is a little slower to 
access than flash memory, and like flash memory, it too has about 100,000 read/write cycles before it 
becomes unreliable. Because of these factors, EEPROM memory is often used to store configuration 
or other types of information that are needed when the system powers up, but are not often changed. 
For example, you might have some sensors that need to have certain values sent to them before they can be 
used, or other devices that need to be initialized with specific data. EEPROM would be a likely candidate 
for storing such configuration data. Again, I will have more to say about this type of memory later 
in the book.    

     Making the Choice 
 So, should it be the amount of memory, I/O pin count, processor speed, or something else that dictates 
your  μ c choice? Again, it depends on what you hope to do with the  μ c, but for most readers, the amount of 
flash and SRAM memory will likely be the most important limitations. But even those two parameters have 
trade-offs. 



CHAPTER 1 ■ INTRODUCTION

5

 For example, you might want to have a program that generates a sine wave for a function generator. 
Because  μ cs are not that fast, you decide not to calculate the sine values on the fly, but rather to store 
pre-calculated sine wave values in a table stored in memory. When you look at the program, you see that 
the program code is pretty small but the amount of memory to store the sine table is large. Therefore, 
the limiting factor in your design is the amount of SRAM needed to hold the table, not the flash memory 
for the program instructions. (You might also store the table in EEPROM memory.) If you don’t have a 
specific program task in mind, buy a board that has the most flash and SRAM memory your pocketbook 
allows. 

 Table  1-1  shows some of the compatible boards that you may want to consider for use with this book.

   1.    The Due has two analog input pins.  
   2.    This is not an Atmel chip, but produced by Diligent and can be programmed using C and an IDE that looks 
virtually identical to the Arduino IDE. It is based on the PIC32 (32-bit) microcontroller.     

     Board Size 
 The physical size of the  μ c card may also be important to you, depending on your planned application. As you 
might expect, larger available memory and more I/O pins dictate a larger footprint for the card. Figure  1-1  
shows several popular  μ c boards. To get some perspective, the center board is a little smaller than the size of 
a deck of cards. The Digispark board (bottom right in Figure  1-1 ) is about the size of a postage stamp. You can 
also “roll your own” board using an 8-pin ATTiny85 chip (8K flash, 512 bytes SRAM and EEPROM) creating a 
really small board size.   

      Table 1-1.    Atmel Microcontrollers Commonly Used in Arduino Boards   

 Microcontroller 

 Flash   memory 

 (bytes) 

 SRAM 

 (bytes) 

 EEPROM 

 (bytes) 

 Clock 

 speed 

 Digital 

 I/O   pins 

 Analog 

 input pins  Voltage 

 Arduino Uno  32K  2K  1K  16Mhz  14  6  5V 

 Arduino Nano  32K  2K  1K  16Mhz  14  8  5V 

 Digispark Pro  16K  2K  1K  16Mhz  14  10  5V 

 RoboRED  32K  2K  1K  16Mhz  14  6  5 or 3.3V 

 ATmega1280  128K  8K  4K  16Mhz  54  16  5V 

 ATmega2560  256K  8K  4K  16Mhz  54  16  5V 

 Arduino Leonardo  32K  2.5K  1K  16Mhz  20  12  5V 

 Arduino Due  512K  96K  -  84Mhz  54  12/2 1   3.3V 

 ChipKIT Max32 2   512K  128K  -  80Mhz  83  16  3.3 



CHAPTER 1 ■ INTRODUCTION

6

     Input/Output (I/O) Pins 
 As you might expect, a  μ c with more memory and I/O pins cost a little more. For example, some ATmega328-
based boards can be purchased for under $5 and those based on the ATmega2560 for under $15. The Due 
(pronounced “do-eh”) costs around $25, whereas the Leonardo is about $10. (Table  1-1  is only a partial 
feature list. Consult the spec sheets for those boards you are considering.) Appendix A presents a list of 
suppliers that you may wish to consider. Note that there are numerous clones available for each member 
of the Arduino family. (For a good discussion of clones, compatibles, derivatives, and counterfeit boards, 
see    http://arduino-info.wikispaces.com/Arduino-YourDuino     .) As a general rule, buy the “biggest” you 
can comfortably afford that is consistent with the project(s) you have in mind. Hardware projects are often 
subject to “feature creep,” where more and more functionality is requested as the project goes forward. 
“Buying bigger than you need” is often a good idea if you can afford it.   

     Breadboard 
 A  breadboard  is used to prototype electronic projects. By using jumper wires that plug into the holes on the 
breadboard, it is easier to create and modify an electronic circuit. The hardware elements found in this text 
are not a central feature. Indeed, I have tried to limit the hardware requirements as much as possible. Still, a 

  Figure 1-1.    Sizes of two different Arduino boards, one based on the Atmega1280 (left) and one based on the 
Atmega328 (right) relative to a standard playing card.       

 

http://arduino-info.wikispaces.com/Arduino-YourDuino


CHAPTER 1 ■ INTRODUCTION

7

breadboard is a useful addition to your tool chest and you should consider investing in one. Figure  1-2  shows 
a typical breadboard. I like this type of breadboard because it has two sets of power feeds and four banks of 
tie points. (The one shown has 2,800 tie points—the little “holes” where you can insert wires, components, 
ICs, and so forth. This is about twice the size you will likely need, but it’s what I had on hand.) You also 
need some jumper wires to connect the tie points. I purchased the breadboard shown in the figure with 150 
jumper wires for less than $20. There are smaller, less expensive breadboards available.  

 If your breadboard doesn’t come with jumper wires, then make sure you purchase some—you’ll need 
them! Note that jumper wires are sold as male-to-male, male-to-female, and female-to-female and with 
different lengths. As to the type to get, I would get a mixture of all three types, although you will likely use the 
male-to-male most often. I would lean toward the longer lengths (e.g., 10″). I prefer the Dupont-style jumper 
wires, as they tend to be a little more durable. 

  Figure 1-2.    A typical breadboard       

 



CHAPTER 1 ■ INTRODUCTION

8

     Miscellaneous Parts 
 Every attempt has been made to minimize the number of electronic parts you need to complete an exercise. 
In many cases, we reuse components between exercises. Appendix B presents a list of the parts that you 
need to complete all the exercises found in this book. With some judicious shopping on eBay, you can 
probably buy all of the components for less than $15 (excluding the breadboard and  μ c boards). While you 
are at it, you might look for some “rubber feet” that can be stuck to the bottom of your board. That way, if you 
slide the board across a table, it won’t scratch it. I won’t even mention what can happen if you slide a naked 
board across a table that has a paperclip on it. 

 I’ve already stated that several experimenter kits are available. If you buy one of these kits, you will have 
all of the components necessary to do any of the projects listed in this text. Some even come with a carrying 
case that keeps the components organized. I’ve only recently started using starter kits, and I find them to be 
very useful and convenient. This is especially true if you’re just getting started with  μ cs. 

 Although you could read this book without buying anything else, not having minimal components and 
a compatible Arduino-based board would seriously dilute the learning experience. You really should have 
the electronic components available to you. You might also find out if your community has a local amateur 
radio (i.e., ham radio) club. Club members are always willing to offer advice about where you can find 
various electronic components at reasonable cost. Your local community college or university is another 
possible source of information, as might be the local teacher of the high school physics class. Indeed, when I 
taught at Butler University, the Physics department opened its lab on Saturday mornings to people who had 
an interest in learning electronics. To his credit, Dr. Marshal Dixon was the instructor who ran the program 
free of charge. Perhaps your community has a similar program. It doesn’t hurt to check. Also, there are very 
active MakerSpaces in many communities that often have faires with Arduino/Electronics sections. With a 
little effort and a few dollars, you should be able to buy what you need.   

     Installing and Verifying the Software 
 A  μ c without software is about as useful as a bicycle without peddles. Like any other computer, a  μ c needs 
program instructions for it to do something useful. Arduino has provided all the software tools within their 
(free) IDE that you need to write program code. The remainder of this section discusses downloading, 
installing, and testing the software you need. 

 Start your Internet browser and go to    http://arduino.cc/en/Main/Software     . There you will find the 
Arduino software download choices for Windows, Mac OS X, and Linux. Click the link that applies to your 
development environment. Because I use the Windows operating system for program development, the 
file that was downloaded was named  arduino-1.5.8-windows.zip . The latest Arduino IDE available at the 
time this is being written is Release 1.5.8 Beta. (Just before we went to press, Release 1.6.0 was announced. 
It’s too late to change all the narrative and retest, but the latest release should work just fine.) You are 
asked to select the directory where you wish to extract the files. I named my directory Arduino1.5.8 and 
placed it off the root of the C drive (e.g.,  C:\Arduino1.5.8 . )  Regardless of the exact number of the release, 
you should see something similar to that shown in Figure  1-3  when you start extracting the files from the 
download.  

http://arduino.cc/en/Main/Software


CHAPTER 1 ■ INTRODUCTION

9

 Inside the Arduino directory you just created, double-click the  arduino.exe  file. In a few moments, you 
may see a splash screen similar to that shown in Figure  1-4 .  

  Figure 1-3.    Extracting the Arduino programming tools       

  Figure 1-4.    Arduino IDE splash screen       

 In a few more seconds, you should see the Arduino IDE. It should look similar to that shown in Figure  1-5 .  

 

 



CHAPTER 1 ■ INTRODUCTION

10

 If you see the IDE as seen in Figure  1-5 , you can be fairly certain that the software download and 
installation was performed successfully. Note that the IDE automatically provides two “empty” functions, 
 setup()  and  loop() . Because all Arduino programs require these two functions, the IDE automatically 
provides empty shells for them. You fill in these shells as needed to get your program to do your bidding. 

 ■   Note    The Diligent chipMAX family is not part of the Atmel family of  μ cs. The compiled program code is 
different from that for the Arduino boards. The chipMAX IDE, however, looks and feels almost identical to the 
Arduino IDE. You should be able to compile and upload the programs presented in this book using the chipMAX 
family of boards. You can download the chipMAX IDE at    http://chipkit.net/started/     . You might consider 
the chipMAX because it has a little more horsepower than most Arduinos.  

  Figure 1-5.    The Arduino integrated development environment       

 

http://chipkit.net/started/


CHAPTER 1 ■ INTRODUCTION

11

 Now that you have the software installed, we can check to see whether your controller board is 
functioning properly.  

     Verifying the Hardware 
 Now that you have the Arduino IDE software installed, let’s connect your computer to the  μ c board, load a 
small program, and verify that all components are working together. First, you need to connect the USB cable 
to your  μ c board and then plug the other end of the USB cable into your computer. 

     Attaching the USB Cable 
 Figure  1-6  shows the  μ c board with the USB cable connected to it. Most companies give you the A-B type 
USB cable when you buy the  μ c board. As you no doubt have figured out, the unattached end of the USB 
cable should be plugged into a USB port connector on your computer.  

 The minute you connect the USB cable to your powered-up computer, power is applied to the  μ c board 
and an LED will light on the  μ c board. Obviously, the USB connection is supplying the voltage necessary 
to drive the  μ c board. The USB 2.0 specs suggest that the cable must supply between 4.4 and 5.25 volts at a 
maximum current of 500mA. This is not a lot of power. However, most  μ c boards also provide a small power 
jack (the black barrel-like “thingy” located on the lower left corner of the board in Figure  1-6 ) where a “wall 
wart” with greater power can be plugged into the power jack to drive the system. Wall warts supplying 9V 
at 1A are a common choice. None of our projects require more current than can be provided by the USB 
connection. (If you are using a USB hub, then make sure the hub provides 500mA to each port.)  

  Figure 1-6.    The  μ c board with USB cable attached       

 



CHAPTER 1 ■ INTRODUCTION

12

 You should select the menu choice that matches the  μ c board you are using. If you change  μ c boards 
at some future date, then simply come back to this menu and select the board to which you are changing. 
Also, depending upon what other devices you have connected to your PC, you may have to reselect the 
COM port, too.  

     Port Selection 
 The IDE does a pretty good job of automatically figuring out which USB port you have selected to power and 
communicate with the  μ c board. To determine which port is being used, simply use the Tools ➤ Port menu 
sequence, as shown in Figure  1-8 . For my particular setup, COM port 6 is being used to communicate with 
the  μ c board.  

     Selecting Your  μ c Board in the Integrated Development Environment 
 The Arduino IDE supports a variety of different  μ c boards. Therefore, you must tell the IDE which board you 
will be using for writing your program code. Figure  1-7  shows the menu sequence (Tools ➤ Board) that you 
use to select your  μ c board. In this example, I have selected the  Arduino Uno  menu choice.  

  Figure 1-7.    Selecting your  μ c board       

 



CHAPTER 1 ■ INTRODUCTION

13

 If you are having difficulty determining which port should be used, then you can use the Windows 
Control Panel to examine which ports are assigned to what. For example, using Windows 8, the first step 
is to select the Device Manager option from the Start Panel list. Then select the Ports option, as shown in 
Figure  1-9 . You should see the Arduino Uno (or the board you selected) listed. If you do not see the device 
listed, you can install the device driver yourself.  

  Figure 1-8.    Port selection       

 



CHAPTER 1 ■ INTRODUCTION

14

 To install the Arduino device driver, run the Windows File Explorer. You can find this by right-clicking 
the lower-left corner of the display and selecting File Explorer. Once you have the File Explorer running, do 
the following:

    1.    Move to the directory where you installed the Arduino IDE. For me, it was 
 C:\Arduino1.5.8 . Looking in that path, I find the information shown in Figure  1-10 .     

  Figure 1-9.    Selecting the Device Manager from the control panel       

 



CHAPTER 1 ■ INTRODUCTION

15

    2.    Click the  drivers  folder and double-click the file named  dpinst-amd64.exe . 
(If you have an older computer, you may have to use the file named  dpinst-x86.
exe .) From there, just answer the questions as they appear (they’re pretty 
obvious), and the new drivers are installed. When the program finishes, you 
should see a COM port allocated to the Arduino, similar to that shown in 
Figure  1-9 .     

 If you change port devices at some point in the future, it is possible that you will need to reselect the 
port using the menu sequence Tools ➤ Port. If the port check box that is shown is not checked, make sure 
you check it before proceeding. Once the port is selected, the IDE knows which port to use to send any data 
to the PC via the USB cable. 

 Now that you are reasonably certain that the software and hardware seem to be connected and working 
properly, let’s load a small program into the IDE and see whether we can run it.   

  Figure 1-10.    Selecting the drivers folder in the Arduino directory       

 



CHAPTER 1 ■ INTRODUCTION

16

     Loading and Running Your First Program 
 The Arduino IDE has gone through numerous revisions over the years. The current version is the first to 
carry the “Arduino 1” moniker, suggesting that the IDE software is now considered stable. Earlier versions of 
the IDE generated a default secondary file name (file extension) of “pde,” which reflected that the source files 
(also called “sketches”) were written under the Processing Development Environment (pde). With the latest 
release, the default secondary file name has been changed to “ino.” The change was made so there wouldn’t 
be conflicts with the source files that were created with earlier versions of the IDE. (Thus far, I have not found 
out why “ino” was selected. So, I’m just going to assume that it is because it squares with the last three letters 
in Arduino.) The latest version of the IDE can read the earlier “pde” files but resaves them as “ino” files by 
default. 

     Writing Your First Program 
 Rather than use one of the example programs that is distributed with the Arduino IDE, let’s actually write 
a short program of our own. Go to the directory where you installed the Arduino IDE and double-click the 
file named  arduino.exe . (You may want to make a shortcut for the EXE and place it on your toolbar.) In a 
moment, you should see the IDE, as shown in Figure  1-5 . 

 Our goal at this point is to write a short program and test whether everything is working properly. 
As such, I won’t spend too much time explaining  why  we are doing things; that will come later. You should 
simply follow the instructions for now and feel safe that you will learn what you are doing in later chapters. 

 Now add the following two lines to the  setup()  function shown in Figure  1-5 : 

  Serial.begin(115200);  
  Serial.println("This is my first Arduino program!");  

 Your IDE should now look similar to Figure  1-11 .  



CHAPTER 1 ■ INTRODUCTION

17

  Figure 1-11.    The IDE after adding the two new source code lines       

   What the Program Does 
 So, what should happen when we compile, upload, and then run our program? First, notice that we added 
our two lines after the two lines: 

  void setup() {  
  // put your setup code here, to run once:  

 



CHAPTER 1 ■ INTRODUCTION

18

 Without going into detail,  setup()  is a C programming language function that must be present in every 
program you write. The opening brace ( { ) at the end of the first line marks the starting point of the code that 
will define what the  setup()  function does. If you look immediately after the two lines we added in Figure  1-11 , 
you will see a closing brace ( } ). Everything between the opening and closing braces is called the  function body  
for  setup() . In other words, the braces mark the start and the end of the program statements that tell us what 
the function is expected to do. 

 So, what does our program do? The first line creates a  Serial  object and sets the communication rate 
(i.e., the baud rate) to 115200 bits/second. (Note that many of the sample programs shipped with the IDE 
use the slower 9600 baud rate. You need to adjust the  Serial  monitor accordingly, as shown in Figure  1-14 . 
I tell you how to change the baud rate shortly.) The second line says that we want to “print” a message 
to the  Serial  object that says: “This is my first Arduino program!” Because there are no more source code 
statements in our program, that’s all this program does. The program simply displays the message on the 
 Serial  object. 

  Serial  object? 
 The Arduino IDE in conjunction with the bootloader includes the ability to communicate between your 

PC and the  μ c board via the USB cable. To make that communication possible, the IDE has a predefined 
program object called a  Serial  object. You initialize the  Serial  object by calling a method, or function, named 
 begin() , which is buried within the  Serial  object. (In C, we use the term  function  as a programming unit. In 
object-oriented programming (OOP) languages, like C++, functions are called  methods . The difference from 
a practical point of view is mostly semantic.) The  begin()  method is responsible for initializing the  Serial  
object (e.g., setting the baud rate, parity bits, etc.) so it can communicate with your PC via the USB cable. 
Once  begin()  finishes its tasks, other methods buried within the  Serial  object can be used to communicate 
with other devices, like your PC. 

 One of the other methods available within the  Serial  object is called  print() , which our program uses 
to send the message to your PC for display. In our simple program, we use the  print()  method to display our 
message on the  Serial  device associated with the  Serial  object. 

  Serial  device? What  Serial  device? 
 Figure  1-12  shows you how to activate the Arduino  Serial  device. The IDE menu sequence Tools ➤ 

 Serial  Monitor (or the keystrokes Ctrl+Shift+M, or click the “magnifying glass” in the upper-right corner of 
the IDE) activates the  Serial  device. Once you have compiled and uploaded the code to the Arduino board, 
your message is displayed on the  Serial  device. If you are running Windows, the  Serial  device is little more 
than a pop-up window where the message is displayed (see Figure  1-14 ).  

 Note that you cannot activate the  Serial  monitor until after the program has been compiled and 
uploaded to the  μ c board. If you try to activate the  Serial  monitor before those tasks finish, the request is 
simply ignored.   



CHAPTER 1 ■ INTRODUCTION

19

     Compiling and Uploading a Program 
 Once you have typed the new source code lines, you are ready to compile the program. The process of 
compiling a program refers to the process where a piece of software embedded within the IDE (i.e., the 
compiler) takes the C program statements you wrote and converts them into machine code instructions 
that the central processing unit (CPU) of your selected Arduino board understands. These machine code 
instructions are ultimately binary data (i.e., 1s and 0s) that cause the CPU to execute the code you wrote. 

  Figure 1-12.    Activating the Serial monitor       

 



CHAPTER 1 ■ INTRODUCTION

20

 If there are no program errors detected by the compiler, you can send the compiled code from your PC 
to the Arduino board, where that code is executed. Figure  1-13  shows you the basic parts of the IDE to write, 
compile, and upload your program.  

  Figure 1-13.    Compile, Compile and Upload buttons and source code window       

 If you just want to see if your program code contains any compiler errors, you could just click the Verify 
button, which is the circular button with the check mark on it near the top of the IDE. Clicking the verify 
button causes the compiler to check your program source code for errors and, finding none, it generates the 
executable code associated with your program. It does not, however, automatically upload that executable 
code to the Arduino board. 

 



CHAPTER 1 ■ INTRODUCTION

21

 Assuming there are no program errors detected by the compiler, you can click the Upload button 
(i.e., the one with the arrow on it, just to the right of the Compile button). Clicking the Upload button causes 
the source code to be compiled and that code to be transferred from your PC into the flash memory on the 
Arduino board. Once the transfer is completed, the program code is immediately executed. In our case, this 
means the message is displayed on the  Serial  monitor, as shown in Figure  1-14 .  

  Figure 1-14.    Program output displayed on Serial monitor       

 Note the message at the bottom of the IDE. The IDE refers to your program as a sketch. The message 
tells you that your program used 1,932 bytes of flash memory out of 32,256 maximum memory bytes. It 
also tells you that 216 bytes of SRAM memory is used to actually process the variables used in the program, 
leaving 1832 bytes of SRAM unused. (Table  1-1  told you there was 2K of SRAM available on an Arduino 
Uno board.) 

 



CHAPTER 1 ■ INTRODUCTION

22

 Another thing to notice is that, in the window for the  Serial  monitor, the monitor’s baud rate is set to 
115200 to match the baud rate in the  Serial .begin(115200) program statement. If the two baud rates don’t 
match, the output will be something looking like Mandarin, or you may not see any output at all. You can 
change the  Serial  monitor’s baud rate by clicking the down-arrow at the end of the baud rate box. I’ll explain 
the other aspects of the  Serial  monitor in later chapters.   

     Summary 
 In this chapter you learned about the Arduino development environment and some of the board choices you 
can use that support the Atmel chip family. Some of the hardware details about the boards were discussed 
to help you decide which board to use while you learn about programming the board using Arduino C. 
You then downloaded the Arduino development environment and installed the IDE. As a check on the IDE 
installation, you wrote a simple program and compiled and uploaded it to the board, and ran the program to 
verify that everything was installed correctly. You are now ready to start learning Arduino C.     



23© Jack Purdum 2015 
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming 
for the Arduino, DOI 10.1007/978-1-4842-0940-0_2

    CHAPTER 2   

 Arduino C            

 The C programming language began its march to become formally defined by the American National 
Standard Institute (ANSI) with the formation of the X3J11 committee in 1983. The committee’s work was 
completed and the standard passed in 1989. Ever since then, the language is often referred to an “ANSI C”. The 
standard is also recognized by the International Organization for Standardization (ISO), so sometimes you’ll 
hear it referred to as “ISO C”. For all practical purposes, ANSI C and ISO C are the same. In a world that is 
overly hung up on political correctness, you will also hear both versions called “standard C”. There have been 
several additional “upgrades” to the language (e.g., 1999 and 2011), but we will simply refer to it as standard C. 

 The C you are about to learn is not standard C. Instead, you will be learning an almost complete subset 
of standard C. The flavor of C used by the Arduino IDE is missing several elements of standard C (e.g., the 
 double  data type), but the absence of those features is not a crippling blow by any means. You will soon 
discover that the subset version of standard C, which we will call  Arduino C , is more than able to perform 
just about any task you can throw at it. The missing features can usually be worked around, albeit sometimes 
in a less elegant manner. 

 Another difference between Arduino C and standard C is that the underlying compiler for Arduino C 
is actually the Open Source C++ compiler. As such, you will discover that most of the libraries used with the 
Arduino IDE are written using C++. This means that, even though you are writing your programs in Arduino 
C, much of the glue holding things together “under the hood” is written in C++. Indeed, you are free to mix C 
with C++ in the Arduino IDE. Still, we concentrate on Arduino C in this book, even though we have added a 
chapter near the end of the book to give you a light introduction to C++. So, from this point forward, when I 
write about the C language, I am actually referring to C as it is implemented in the Arduino IDE. 

 So, with that caveat in mind, let’s start learning Arduino C. 

   The Building Blocks of All Programming Languages 
 All programming languages, from Ada to ZPL, are built from four basic elements:

•    Expressions  

•   Statements  

•   Statement blocks  

•   Function blocks    

 The last element, function blocks, may be called different names in different languages, such as 
methods in C++, C#, and Java, procedures in Pascal, subroutines in Basic or Fortran, or perhaps some more 
exotic name in lesser-known languages. Regardless of their name,  function blocks  tend to be blocks of code 
designed to address some narrowly defined task. Programs are little more than arrangements of these 
elements in a way that solves a problem. 



CHAPTER 2 ■ ARDUINO C 

24

   Expressions 
 An  expression  is created by combining operands and operators. Simply stated, an  operand  is typically a 
piece of data that is acted upon by an operator. An  operator  is often a mathematical or logical action that is 
performed on one or more operands. For example, 

  a + b  
  m – 3000  
  g < d  

 are examples of expressions. In the first example, the operands  a  and  b  are added (the + operator) together 
in a math expression. In the second example, the numeric constant 3000 (an operand) is subtracted (the – 
operator) from the operand named  m . In the last example, operand  g  is compared to operand  d  to see if  g  is 
less than (the < operator)  d . In this last example, a relational operator (i.e., the “less than” operator, or “<”) 
is used instead of a math operator. In all three examples, the two operands are used in conjunction with a 
single operator to form an expression. 

 The first example is an addition expression, the second is a subtraction expression, whereas the last 
example is a relational expression. In each of these expressions, there are two operands and one operator. 
That’s why you often hear such expressions referred to as binary expressions.  Binary expressions  are 
expressions that use a  binary operator . Binary operators (e.g., +, –, and <) always use two operands. Another 
important thing to keep in mind is that any expression ultimately resolves to a value. There are  unary 
operators  that have only one operand and  ternary operators  that require three operands. However, the binary 
operators are the most common in C. 

 Expressions can be combined. For example, suppose A = 1, B = 2, and C = 3. You can write a complex 
expression as: 

  A + B + C  

 Because all expressions resolve to a value, you can resolve the first subexpression, A + B, to: 

  1 + 2 + C  

 Because the first subexpression is now pure numbers, you can resolve the first subexpression to the 
value 3. You can then resolve the complex expression to: 

  3 + C  

 Note what happened here. You took a complex expression with two operators and three operands 
and resolved one of the subexpressions (i.e., A + B) to 3. However, in the process, you reduced the complex 
expression to a single (binary) expression, 3 + C. Now you can resolve the remaining expression to 

  3 + C  
  3 + 3  
  6  

 and the complex expression with two subexpressions is now resolved to a single value, 6. Often you will hear 
the process of simplifying a complex expression called  factoring an expression  or  resolving an expression . 

 What about the relational expression  g  <  d ? Suppose  g  = 5 and  d  = 4, then: 

 g < d 
 5 < 4 
 false 



CHAPTER 2 ■ ARDUINO C 

25

 The expression resolves to “false” because 5 is greater than 4, not less than 4. 
 You might be thinking: “Wait a second! You just said that all expressions resolve to a value. ‘False’ isn’t 

a value, it’s a word.” True, but in programming languages, logic  true  and logic  false  expressions do resolve 
to a value. In most languages, logic  true  resolves to a non-zero value (e.g., –1 or 1) and logic  false  is zero. 
 Relational expressions are designed to resolve to a logic true or false state , so they ultimately do resolve to a 
value that can be used in a program.  

     Statements 
 A  statement  is a complete C instruction for the computer. All C statements end with a semicolon (;). 
The following are examples of C statements: 

  i = 50;  
  a = b + c;  
  m = d / 2;  

 In the first example, the equal sign (=) is called the  assignment operator  and is used to “assign” the value 
on the right side of the equal sign to the operand on the left side of the assignment operator. Therefore, the 
value 50 is assigned to variable  i.  Note how this first statement example is nothing more than an expression 
using the assignment operator with a semicolon at the end of the line. The operands are 50 and variable  i . 

 So, what is a variable? Simply stated, a  variable  is nothing more than a location in memory that’s been 
assigned a name. You will read much more about variables in Chapter   3    . 

 In the second statement, you have a complex expression with a semicolon at the end. In this example, 
the value to assign into variable  a  is not yet known, so you must resolve the expression  b + c  first to get a 
value. If  b  = 4 and  c  = 5, then we can resolve the complex expression to: 

  a = b + c  
  a = 4 + 5  
  a = 9  

 The last expression assigns the value 9 into variable  a . By adding a semicolon at the end of the line, the 
expression becomes a statement that causes variable  a  to change its value to 9. Remember in Chapter   1     I 
told you the C compiler is responsible for changing the English-like syntax of C into the 1s and 0s that the μc 
understands? Well, it is the semicolon that makes the C compiler finish whatever task the statement wants to 
be done. If you have a complex statement like 

  x = a + b – c + g + h + k;  

 then the compiler must resolve all of the intermediate expressions (i.e.,  a + b, c + g, h + k ) before it can 
determine what new value to assign into  x.  It is the semicolon at the end of the statement that tells the 
compiler it has all the intermediate expressions it needs to resolve the statement. 

 ■   Note    The first kind of programming mistake you will likely make is forgetting to place a semicolon at the 
end of a statement. Because the semicolon is a  statement terminator , each program statement must end with a 
semicolon. Without the semicolon, the compiler would not know when it has all of the information necessary to 
process the statement.  

http://dx.doi.org/10.1007/978-1-4842-0940-0_3
http://dx.doi.org/10.1007/978-1-4842-0940-0_1


CHAPTER 2 ■ ARDUINO C 

26

   Operator Precedence 
 Suppose you have the following statement comprised of several expressions: 

  j = 5 + k * 2;  

 where  k  = 3 and the asterisk (*) is the multiplication operator. Now ask yourself: Does  j  equal 16 (i.e., 
16 = 8 * 2) or does it equal 11 (i.e., 11 = 5 + 6)? The statement appears ambiguous because we aren’t sure 
about the order in which the complex expression is resolved. Which of the following is it? 

  j = 5 + k * 2;     j = 5 + k * 2;  
  j = 5 + 3 * 2;     j = 5 + 3 * 2;  
  j = 8 * 2          j = 5 + 6;  
  j = 16;            j = 11;  

 Clearly, the results differ because of the order in which we resolve the complex expression. C resolves 
such ambiguities by assigning each operator a precedence level.  Operator precedence  refers to the order in 
which complex expressions are resolved. A partial C precedence table can be seen in Table  2-1 .  

     Table 2-1.    Operator Precedence   

 Precedence level  Operator 

 1  * (multiplication), /, % 

 2  +, - 

 In Table  2-1 , you can see that multiplication, division, and modulo expressions are resolved before 
addition and subtraction expressions. Therefore, in the preceding expressions, the correct answer for  j  is 11 
because the multiplication expression is resolved before the addition expression. If there is a tie between 
math operator precedence levels, they are resolved by solving the subexpressions in a left-to-right manner. 
Resolving subexpressions in this manner means that the math operators are left associative. The term  left 
associative  means that operator precedence ties are factored by processing the subexpressions in a left-
to-right order. Because there are more operators than are presented in Table  2-1 , I will be expanding the 
precedence table as you learn more about C.   

     Statement Blocks 
 A  statement block  consists of one or more statements grouped together so they are viewed by the compiler 
as though they are a single statement. For example, suppose you are an apartment manager and, if there is 4 
or more inches of snow on the ground, you need to shovel the sidewalk. Assuming the  >=  operator is read as 
“greater than or equal to,” you might write this expression as: 

  if (snow >= 4) {  
           // Next 3 statements form a statement block body  
           PutOnSnowRemovalClothes();  
           GetSnowShovel();  
           ShovelSidewalk();  
  } else {  
           GoBackToBed();  
  }  



CHAPTER 2 ■ ARDUINO C 

27

 Statement blocks start with an opening brace character ( { ) and end with a closing brace character ( } ). 
All statements between the opening and closing braces form the  statement block body . In our example, it 
appears that when 4 or more inches of snow exist, we will put on our coat, grab a snow shovel, and shovel 
the sidewalks. If there is less than 4 inches of snow, a different statement block is executed (i.e., we go back 
to bed). You can place any type of valid C statements you wish within the statement block. You will see lots 
of examples of this in later chapters. For now, just think of a statement block as being defined by the opening 
and closing braces.  

     Function Blocks 
 A  function block  is a block of code that is designed to accomplish a single task. Although you may not be 
aware of it, you actually used a function block in the previous section. That is,  PutOnSnowRemovalStuff()  is a 
function that is designed to have you put on your coat. The actual code might look like this: 

  void PutOnSnowRemovalStuff(void) {  
          if (NotDressed) {  
                PutOnClothes();  
                PutOnShoes();  
          }  
          GoToCloset();  
          PutOnBoots();  
          PutOnCoat();  
          PutOnGloves();  
          PutOnHat();  
  }  

 In this example, the function block also starts with an opening brace ( { ) and ends with a closing brace 
( } ). However, well-designed function blocks are usually written to create “black boxes” in which the details 
of  how  we are doing something are buried in the function. For example, you might be thinking of writing the 
code to control a robot that requires sensors to detect whatever lies ahead. You might write a  TurnRight()  
function that turns your robot 90 degrees to the right. This probably involves turning one of the wheels, 
perhaps applying a greater number of digital pulses to a stepper motor to cause the front two wheels to turn 
to the right. However, perhaps at a later time you decide to change your robot from four wheels to three 
wheels. Now you don’t need to turn two wheels; only one needs to turn. By hiding the details of what has to 
be done to turn your robot to the right in the  TurnRight()  black box, you only need to change the program 
code in that one function block, rather than in a whole bunch of places where a right turn might be needed. 
By writing a  TurnRight()  function, you can avoid duplicating all of the statements that are in the  TurnRight()  
function each time a right turn is called for in the program. 

 Another example might help. Suppose you are writing an application that inputs a phone number 
from a keypad. Your application requires home, cell, and work phone numbers. To make sure a valid phone 
number was entered, you need to check that it fits the 1-123-456-7890 format. Now you could duplicate 
the format checking program code three times in the program, or you could write a  CheckPhoneFormat()  
function and simply “call” it three times. (For now, you can think of the term “call” as meaning to execute the 
body of code associated with the function. I have more to say about this in “The Backpack Analogy” sidebar 
later in this chapter.) Let’s see … write, test, and debug the code three times, or write a function and test and 
debug it once. Kinda seems like a no-brainer to me. Also, using functions means that you will be using less 
memory resources by not duplicating the code. 

 If you think of a computer program as a sequence of smaller tasks, function blocks are used to delimit 
the code for each of those smaller tasks. As you will soon find out, the Arduino programming environment 
has hundreds, if not thousands, of pre-written function blocks that you can use in your own programs. This 
means you don’t have to reinvent the wheel each time a common programming task steps in front of you. 



CHAPTER 2 ■ ARDUINO C 

28

You just grab one of the existing function blocks from the library of pre-written function blocks and stick it 
into your program. Life is good … and often easier because you can stand on the shoulders of programmers 
who have previously contributed to a C programming library that you can use! 

 Every program you can think of is built from the four basic parts discussed in this section. Indeed, the 
rest of this book is nothing more than showing you how to use these simple parts in an effective way to solve 
a particular programming problem. 

 Ah, but therein lies the problem. There are an infinite number of ways to combine these elements into 
a computer program, and some will work and others won’t. In fact, even if you get your program to work, 
it doesn’t mean there’s not a different (better?) way to accomplish the same task. For instance, suppose 
you want to sort a group of numbers into a list, going from the smallest to the largest number in the group. 
There are dozens of ways to sort a list of numbers into ascending order, each with its own advantages and 
disadvantages. In fact, you’ll find that your range of programming choices increases as you learn more 
about programming in general. Even something as simple as scanning a sequence of text looking for a 
particular pattern can be done many different ways (e.g., Brute Force vs. Boyer-Moore algorithms). The more 
programming knowledge and experience you gain, the more you’ll be able to craft an elegant solution to a 
given programming problem. After all, if the only tool you have is a hammer, it shouldn’t be too surprising 
that all your problems look like a nail. 

 Beginning programmers tend to lose sight of the fact that a function really should only perform one task. 
Their tendency is to craft a function that is a Swiss Army knife—trying to do too much in a single function. 
While a Swiss Army knife is convenient, it really doesn’t do any of the tasks as well as a dedicated tool does. 
Which would you rather do—use a Swiss Army knife’s saw blade to cut down a tree, or use a chain saw? 

 Further, as the complexity of a given task increases, so do the ways in which you can solve the problem. 
If someone came to you and asked you to write a fire alarm system for a hotel, there are probably a bazillion 
different ways to accomplish that task. Now the question is: Where do you start? That’s the topic of the next 
section.   

   The Five Program Steps 
 When I was teaching programming courses, we would have in-class quizzes from time-to-time. Time allotted 
for the quizzes was usually about 30 minutes, and the programming task was always manageable within that 
time line. Virtually all of the students started banging on their keyboards the instant the clock started. 

 Bad move. 
 Ah, but there was always a student or two who stared at the ceiling, scribbled some notes on a piece of 

paper, all before they started writing a single line of code. While they often starting writing code five or ten 
minutes later than the other students, they always turned in a worthy solution. How come? Why? 

 The reason is because they thought about their plan of attack  before  they started throwing statements 
on the screen. Most students seem to think movement or activity means a solution. Not so; yet most students 
didn’t seem to know where or how to start solving a programming problem. That’s the purpose of this 
section: to give you a way to begin to organize a solution to a programming problem. 

 The simple fact is that every program you can think of can be reduced to five basic program elements, or 
steps. When you first start to design a solution to a programming problem, you should think of that program 
in terms of the following Five Program Steps: 1) Initialization, 2) Input, 3) Processing, 4) Output, and 
5) Termination. Let’s consider these steps in a little more detail. 

     1. Initialization Step 
 The purpose of the  Initialization Step  is  to establish the environment in which the program will run . For 
example, if you’ve ever used Microsoft Excel, Word, or similar programs, the File command frequently has a 
list of the most recently used files. Internet browsers allow you to define a home page. A print program often 
has a default printer that is initialized. A database program often establishes a default network connection. 



CHAPTER 2 ■ ARDUINO C 

29

In all of these cases, data is fetched from somewhere (i.e., a data file, memory, EEPROM, the registry) and is 
used to establish some baseline environment in which the program is to run. 

 Simply stated, the Initialization Step does whatever background preparation must be done before the 
program can begin execution to solve its primary task. It's the same in the world of μcs. Ports need to be 
initialized, sensors have to be activated, thermocouples need to stabilize, plus a host of other possible events. 

 As a general rule, the program statements in the Initialization Step are only performed once when the 
program first begins execution. The code in the Initialization Step is not executed again, unless the μc is reset 
or power is lost and reapplied.  

     2. Input Step 
 Every computer program has a task that is designed to take some existing state of information, process it in some 
way, and show or otherwise use the new state of that information. If you are writing a fire alarm system, you take 
the information provided by the fire sensors, interpret their current state, and, if there is a fire, do something 
about it. If the sensor shows no fire, perhaps a second set of sensors are read and the process repeated. Indeed, 
your program may do nothing for decades but take new readings every few seconds and determine if some 
remedial action is necessary. Alas, the day may come when a fire is sensed and remedial actions are taken. Still, 
the entire process depends upon inputting fresh data from the sensors in a timely fashion. 

 The Input Step is the sequence of program statements that are necessary to acquire the information 
needed to solve the task at hand. That information, or data, may come from a sensor, a potentiometer, a 
file handle, a database or printer connection, a Wi-Fi signal—the list of data sources is almost endless. 
Regardless of the source, however, the purpose is to provide input that proves useful to the solution of the 
problem at hand.  

     3. Process Step 
 Continuing with our fire alarm example, once the input from the sensors is received, some body of code 
must be responsible for determining if the sensors are detecting a fire or not. In other words, the voltage (i.e., 
temperature) must be read (input) and then interpreted (i.e., the data processed) to determine the current 
state of the sensors. In a desktop application, perhaps the data input is the price and quantity of some 
item purchased by a customer. The Process Step may perform the task of determining the total cost of the 
purchase to the consumer. 

 Note that a program may have multiple Process Steps. For example, with our consumer, there may be a 
process to determine the sales tax due on the purchase. In this case, the process of determining the total cost 
of the order becomes an input to the process that calculates the sales tax due. The sales and taxes due could 
be the inputs to yet another process (e.g., consumer billing or updating a database). 

 In all cases, however, the Process Step is responsible for taking a set of inputs and processing it to get a 
new set of data.  

     4. Output Step 
 After the Process Step has finished its work, the new value is typically output on some device or sent to 
some other entity for further processing. In our consumer sales example, we might now display the total 
amount the consumer owes us. The Output Step, however, isn’t limited to simply displaying the new data. 
Quite often, the new data is saved or passed along to some other program. For example, a program may 
accumulate the sales figures throughout the day and then update a database at night so some other program 
can generate a sales report for management to review the next morning. In our fire alarm example, the 
Output Step may cause an LED for a particular sensor to continue to display a green color under normal 
conditions. If a fire is sensed, perhaps the LED displays red, so whomever is in charge can see what area of 
the building is on fire. 



CHAPTER 2 ■ ARDUINO C 

30

 The Output Step could be the Input Step for another program. For example, the Output Step might be 
an average of several temperature readings where, if a certain temperature is reached, two vats of chemicals 
are mixed together. It this example, the Output Step of the temperature program becomes the Input Step for 
a vat-mixing program. 

 Simply stated, the Output Step is responsible for using the results of the Process Step. This utilization 
could be as simple as displaying the new data on a display device or passing that new value on to some other 
program or process.  

     5. Termination Step 
 The Termination Step has the responsibility of “cleaning up” after the program is finished performing its 
task. In desktop applications, it’s common for the Termination Step to perform the Initialization Step “in 
reverse.” That is, if the program keeps track of the most recent data files that were used, the Termination 
Step must update that list of files. If the Initialization Step opens a database or printer connection, the 
Termination Step should close that connection down so unused resources are returned to the system. 

 Many μc applications, however, are not designed to terminate. A fire alarm system is likely designed 
to continue running forever, as long as things are “normal.” Even then, however, there may still be a 
Termination Process that is followed. For example, if the fire alarm system has a component failure, the 
Termination Process may try to identify the failed component before the system shuts down for repairs. 
Perhaps the Termination Process deactivates the alarm system before a maintenance shutdown. 

 Simply stated, the Termination Process should allow for a graceful termination of the currently running 
program. In most of the projects you examine in this book, the Termination Step is not used. It is assumed 
that the program continues until power is removed or there is a component failure.  

     The Purpose of the Five Program Steps 
 I can’t even begin to guess how many times I’ve given an in-class coding problem only to have the students say: “I 
don’t even know where to start.” Well, clearly they weren’t paying attention, because that’s the purpose of the Five 
Program Steps—to serve as a starting point for designing a program. As mentioned earlier, there is a tremendous 
urge to just start banging out source code on the keyboard the minute the programming task is defined. 

 Big mistake. 
 Even a one or two sentence statement for each of the Five Program Steps is probably enough to get you 

started on the design and coding of a given program. An  algorithm  is nothing more than a formal statement 
of how a given set of inputs are manipulated to produce a desired result. An algorithm is like a recipe or 
a set of blueprints: it describes what you need to do to reach a desired goal or endpoint. And so it is with 
programming: the Five Program Steps can be used to formulate a plan for solving a given programming 
problem. Although algorithms are more closely tied to Steps 2 and 3 (i.e., Input and Processing), the Five 
Program Steps should help you formulate an algorithm to solve whatever task is at hand. 

 Fight the urge to “look busy” by just hacking away at the keyboard without a program design based on 
the Five Program Steps. Creating a program design may seem like too much work, but trust me, you’ll save 
a ton of time in the long run. (Where did the phrase “a ton of time” come from? Is time a resting place for 
Higgs-boson particles?)   

     A Revisit to Your First Program 
 Listing  2-1  shows the program code that you loaded and ran in the previous chapter. Let’s look at that program in 
terms of our Five Program Steps. First of all, Listing  2-1  is the source code for your first program.  Source code  refers 
to the series of C language statements that constitute the program. It is the source code that the C compiler  parses  
(i.e., reads and checks for syntax and semantic errors) and ultimately translates into binary code (i.e., the 1s and 0s) 
that the μc understands. Almost all of the source code is built up from C language statements … but not all. 



CHAPTER 2 ■ ARDUINO C 

31

 ■   Note   The programs you write using the Arduino C and its IDE are also called “sketches” in the Arduino 
literature. However, I will use the term “program” instead of sketches.  

         Listing 2-1. The Source Code for Your First Program 

  void setup()  
  {                     // Start of setup() function body  

   Serial.begin(115200);// Step 1, Initialization  

    // Step 2, Input (the letters between the quotes)  
    // Step 3. Process – Serial object formats data for display  
    // Step 4. Output – Display the message on the monitor  
  Serial.println("This is my first Arduino program!");  
  }                     // End of setup() function body  

  void loop()  
  {                     // Start of loop() function body  
  }                     // End of loop() function body   

     The setup() Function 
 Every Arduino program  must  have a  setup()  function. While it is common to have program statements and 
directives appear before the  setup()  function, it is the  setup()  function that marks the actual start of the program. 
The purpose of the  setup()  function is to set the environment in which the program is run. In Listing  2-1 , the 
Initialization Step initializes the  Serial  object for use in the program with the following statement: 

  Serial.begin(115200);// Step 1, Initialization  

 Note that the statement ends with the semicolon. The two slash marks (i.e., the  // ) are used to 
introduce a  comment  in the program. I will have more to say about program comments later in the chapter. 
For now, just think of program comments as little notes to help clarify what the code is doing. 

 This is the only remaining statement in our short program: 

  Serial.println("This is my first Arduino program!");  

 However, that single statement is really doing a lot of work. First, the sentence that appears between the 
two double quote marks is a sequence of characters that represents the input data for the program. As such, 
it serves as the Input Step (Step 2) of the Five Program Steps. The sequence of characters is the message that 
you want displayed on the  Serial  device. 

 Once the data is provided by Step 2, those characters within the quote marks are prepared for display 
by the  Serial  object. The result is that Step 3, the Process Step, converts what appears on the screen into 
the host character set. For the Arduino, the characters are processed using the  ASCII  (American Standard 
Code for Information Interchange) character set. For example, when you see a capital A displayed on 
your monitor, what the processor sees is the integer value 65. (A complete ASCII table can be found at 
   www.bibase.com/ascii.htm     .) When the Process Step is completed, your message is ready to be displayed. 

 As mentioned in the previous chapter, the  println()  method of the  Serial  object does the actual work 
moving your message to the output device for display. In this program, the output device is the  Serial  
monitor. Therefore, the Output Step, Step 4, is tasked to the  println()  method, which results in your message 

http://www.bibase.com/ascii.htm


CHAPTER 2 ■ ARDUINO C 

32

appearing on the  Serial  monitor on your PC. (Recall that C++ uses the term method in lieu of the C term 
function. For all practical purposes, they are the same. However, I try to use the term  method  when the code 
is part of a C++ class, and I reserve the word  function  when the code is written in C.)  

     The loop() Function 
 At this point, the program proceeds to the  loop()  function, which appears at the bottom of Listing  2-1 . 
Similar to the  setup()  function, every Arduino program  must  have a  loop()  function. However, in our simple 
program, there is are no statements in the statement body for the  loop()  function. That is, no program 
statements appear between the opening and closing braces of the  loop()  function. 

 Because there are no further program statements in the program source code in Listing  2-1 , our 
program is finished. After all, if there are no more program statements, there’s nothing left for the program to 
do, so our program ends. We have reached Step 5, the Termination Step. 

 Well, not really. 
 Arduino programs are designed in such a way that they proceed to the  loop()  function after the 

 setup()  function’s closing brace is reached, even if there are no statements in the  loop()  function body. In 
other words, even though you can “see” it, after your message is displayed on the  Serial  monitor, it merrily 
proceeds to the  loop()  function and spins around inside of it doing nothing! Stated differently, your program 
never ends … there is no Step 5, or Termination Step. Indeed, you program continues to spin around in the 
empty  loop()  function doing nothing until you remove power or there is some kind of component failure. 

 ■   Note    You can prove that  loop()  runs forever by looking at the C code file named  main.cpp  in your Arduino 
directory at  hardware/arduino/avr/cores/arduino/main.cpp . 

 Because you may not know enough C to decipher what appears in the file at this moment, after a few more 
chapters you can return to that file and you’ll be able to confirm that  loop()  does get called, even if it is empty, 
and that it does continue to execute forever.  

 You can demonstrate that  loop()  repeatedly executes with one simple change to the program shown in 
Listing  2-1 . Simply move the last program statement in  setup()  into  loop().  Your modified program should 
look like Listing  2-2 . 

    Listing 2-2. The Source Code for Your First Program, As Modified 

  void setup()  
  {                     // Start of setup() function body  

   Serial.begin(115200);// Step 1, Initialization  

  // Step 2, Input (the letters between the quotes)casll  
  // Step 3. Process – Serial object formats data for display  
  // Step 4. Output – Display the message on the monitor  

  }                     // End of setup() function body  



CHAPTER 2 ■ ARDUINO C 

33

  void loop()  
  {                     // Start of loop() function body  

   Serial.println("This is my first Arduino program!");  

  }                     // End of loop() function body   

 Now recompile and upload the new version of your program and invoke the  Serial  monitor. Any change 
in the displayed output? 

 If you modified the program correctly, the output on your  Serial  monitor should look like Figure  2-1 . As 
you can see, the program message is displayed over and over because the  loop()  function is executing over 
and over. In other words, the purpose of the  loop()  function is to execute the statements in its function body 
over and over,  ad infinitum .  

  Figure 2-1.    Output from the modified first program       

 So, how useful can it be to just repeat the same sequence of instructions over and over? Actually, it 
can be very useful. You might have a building with 100 fire sensors scattered throughout the building. One 
statement in  loop()  causes the program to go out and read the sensor to see if there is a fire. Finding no fire, 
the code changes some kind of sensor index, and the code goes out and reads the next fire sensor. Finding 
no fire, it increments the sensor index and reads the next sensor, and continues doing so until all 100 
sensors have been read. Assuming all is well, the loop repeats itself and we visit sensor 1 again. The program 
constantly repeats this sequence until either there is a fire, or the power is removed, or some component in 
the system fails. The hypothetical  loop()  function might look something like this: 

  void loop()  
  {  
     int sensorIndex;  
     int fire;  

 



CHAPTER 2 ■ ARDUINO C 

34

     for (sensorIndex = 1; sensorIndex <= 100; sensorIndex = sensorIndex + 1) {  
      fire = ReadSensor(sensorIndex); // Return 1 if fire, 0 otherwise  

      if (fire == 1) {   // If fire, do the following statements...  
               SoundAlarm();  
               TurnOnSprinklerSystem();  
               CallFireDepartment();  
               WaitForAllClear();  
     }  
     // If fire equals 0, go read the next sensor  
     }  
  }  

 Although you are not ready to completely understand the code fragment presented here, you can see 
we define two variables named  sensorIndex  and  fire . A  for  loop starts by setting the index equal to 1, and 
then calls a function named  ReadSensor(sensorIndex) , sending the index number of the sensor we want to 
read ( sensorIndex ) to the function. Evidently, the  ReadSensor()  function returns a value of 0 if there is no fire 
detected and a value of 1 if there is a fire. The  if  statement checks to see if a fire was detected or not. If there 
is a fire, the four function calls within the  if  statement block are called. If there is no fire, those statements are 
skipped and we look at the next sensor. 

 Even though I have not discussed  for  loops or  if  statements, it’s pretty easy to see what the intent of the 
program is. Clearly, the program is designed to monitor and protect the building “forever.” Only when there 
is a fire does the code deviate from its simple repeated sampling of the sensors.  

     Arduino Program Requirements 
 The following are important lessons to learn in this section:

•    Every Arduino program must have a  setup()  function.  

•   The  setup()  function is only executed once when the program first starts, making it a 
good candidate for Step 1, Initialization code.  

•   Every Arduino program must have a  loop()  function.  

•   The  loop()  function is repeatedly executed until power is removed, a program is 
reset, or a component fails. Programs Steps 2 through 4 usually appear within  loop() .      

     The Blink Program 
 The Arduino IDE has numerous sample programs distributed with it. One of the sample programs is the 
Blink program. To load Blink into the IDE, use the File ➤ Examples ➤ Basics ➤ Blink menu sequence, as 
shown in Figure  2-2 .  



CHAPTER 2 ■ ARDUINO C 

35

  Figure 2-2.    Menu sequence for Blink example       

 The source code for the Blink program is shown in Listing  2-3 . 

      Listing 2-3. The Blink Program 

  /*  
   Blink  
   Turns on an LED on for one second, then off for one second, repeatedly.  

   Most Arduinos have an on-board LED you can control. On the Uno and  
   Leonardo, it is attached to digital pin 13. If you're unsure what  
   pin the on-board LED is connected to on your Arduino model, check  
   the documentation at     http://arduino.cc      

   This example code is in the public domain.  

   modified 8 May 2014  
   by Scott Fitzgerald  
   */  

  // the setup function runs once when you press reset or power the board  
   void setup() {  
   // initialize digital pin 13 as an output.  
   pinMode(13, OUTPUT);  
  }  

 

http://arduino.cc/


CHAPTER 2 ■ ARDUINO C 

36

  // the loop function runs over and over again forever  
  void loop() {  
   digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)  
   delay(1000);            // wait for a second  
   digitalWrite(13, LOW);  // turn the LED off by making the voltage LOW  
   delay(1000);            // wait for a second  
  }   

 As mentioned earlier, the program s ource code  refers to the series of C language statements that 
constitute the program. It is the source code that the C compiler parses (i.e., reads and checks for syntax 
and semantic errors) and ultimately translates into binary code (i.e., the 1s and 0s ) that the μc understands. 
Almost all of the source code is built up from C language statements … but not all. (As mentioned earlier, 
most Arduino literature refers to Arduino program source code as  sketches . However, I prefer to use the term 
“program” rather than sketch.) 

     Program Comments 
 I mentioned program comments before, but now we want to consider them in greater detail. The first dozen 
or so lines in the Blink program are as follows: 

  /*  
   Blink  
   Turns on an LED on for one second, then off for one second, repeatedly.  

   Most Arduinos have an on-board LED you can control. On the Uno and  
   Leonardo, it is attached to digital pin 13. If you're unsure what  
   pin the on-board LED is connected to on your Arduino model, check  
   the documentation at     http://arduino.cc      

   This example code is in the public domain.  

   modified 8 May 2014  
   by Scott Fitzgerald  
   */  

 If you look closely at these lines, you can see that none of them ends with a semicolon. That is, none of 
the lines forms a C program statement since all program C statements must end with a semicolon. If that’s 
the case, what are they and why are they part of the source code? 

 The preceding lines are called comment lines.  Comment lines  are used to document what’s going on in 
a program for whomever may be reading the code. There are two basic types of comments: single-line and 
multi-line. 

   Single-Line Comments 
 You saw several examples of single-line comments in Listings  2-1  and  2-2 . Single-line comments begin with 
a pair of slash ( // ) characters. There can be no spaces between the two slashes. (Otherwise the compiler 
might think it was looking at the division operator.) Upon seeing the two slash characters, the compiler 
knows that what follows from the two slashes  to the end of the current line , is a program comment that does 

http://arduino.cc/


CHAPTER 2 ■ ARDUINO C 

37

not need to be compiled. As such, comments that begin with  //  must appear on the same line as the two 
slash characters. If you fold a comment to the next line without the leading slashes, it will be seen as a syntax 
error by the compiler. 

 Again, the following is an example of this type of comment: 

  // Pin 13 has an LED connected on most Arduino boards.  
  // give it a name:   

   Multi-line Comments 
 Multi-line comments begin with a slash-asterisk pair ( /* ) and end with an asterisk-slash pair ( */ ). There 
are no spaces between the two character pairs. Everything in between these two character pairs is treated 
as a comment and is ignored by the compiler. Unlike single-line comments, multi-line comments can span 
multiple lines. You can see an example of a multi-line comment at the top of Listing  2-3 . 

 Note that you could write the multi-line comment at the top of Listing  2-3  as 

  // Blink  
  // Turns on an LED on for one second, then off for one second, repeatedly.  

 and the program would behave exactly the same. However, multi-line comments are useful for long 
comments that span many lines because they take fewer keystrokes to implement. The compiler could care 
less which you use. The important thing to remember is that  comments invoke no penalty in terms of memory 
space or the performance of the program , so there’s no reason not to use them as needed.  

   When to Use Comments 
 Well, what does “as needed” mean? Fair question. Comments should be used any time you wish to 
document what a program is doing or about to do. Reading code isn’t always easy and it might be hard for 
the reader to figure out what’s going on in a particular section of code. In such cases, a comment may make 
it easier for someone to decipher what the code is supposed to do. For example, if you have a black box 
function that implements some really scary mathematical equation, you might add a comment to explain 
what’s going on. If the function is really complex, it’s not uncommon to put a multi-line reference comment 
into the code that has a book and page number (or perhaps an Internet URL address) where the reader can 
go for further information. 

 At first blush, it may seem that comments are directed to someone other than the person who actually 
wrote the code. Frequently, that is true, especially if you write code in a commercial environment with other 
programmers who may have to work with your code. However, even if you are the only person who will ever 
see the code, you’ll be amazed how a piece of code that was so easy to understand this morning may as 
well be written in Sanskrit six months from now. Comments should be used to help the person reading the 
code … whomever that may be. 

 Yet, the question still remains: When do you add comments to a program? Too few comments often 
make the code difficult to understand. There simply are not enough comments to be helpful to your 
understanding of the code. However, too many comments can have the same effect because they “get 
in the way” of understanding the code. Comments are clutter if they don’t contribute any real benefit to 
understanding the code. 

 There are no hard-and-fast rules for commenting the program source code. My preference is to use a 
multi-line comment before most function blocks or any line (or lines) of code that do something unusual or 
“tricky.” You will see examples of function block comments in later chapters. 



CHAPTER 2 ■ ARDUINO C 

38

 You should use single-line comments when you do something unusual that may take a few seconds or 
more to understand. For example, 

  x = y / 2.0;  
  x = y * .5;       // Divide the number in half  

 Both statements produce the same result for floating point numbers; they divide the number held in 
variable  y  in half. However, the second form is slightly faster because division is the slowest math operation 
you can use. The comment simply jogs the reader’s mind as to what’s being done. (Normally, you would not 
do this anyway. It would only be noticeable if the calculation was being done thousands of times in a big 
program loop.) 

 As a general rule, comment those lines of code that do something that makes you pause to understand 
what that line is doing. Commenting every line is almost never necessary in a program. Commenting 
obvious program statements is a waste of time: 

  x = x + 1;       // Take the value of x and add 1 to it.  

 Really? If the reader can’t figure out what the preceding statement is doing without reading the 
comment, they really shouldn’t be reading the program source code in the first place. The correct use of 
comments should result in relatively few comments in a program. I’ll have more to say about comments as 
you gain more programming experience.   

     The setup() Function in Blink 
 There is only one program statement in the  setup()  function: 

  pinMode(13, OUTPUT);  

 This statement activates (or “calls”) a function called  pinMode() , which is a function provided to you 
with the Arduino IDE. We know this function must be buried within the IDE because we don’t see the 
program source code for it in Listing  2-3 . Therefore we can deduce that  pinMode()  is a function that is part 
of the “standard function library” that is part of the IDE. As pointed out in Chapter   1    , a function is a small 
collection of program statements that is designed to perform a specific task. Some tasks are so common 
to almost all programs that they are collected together into a function library. A  function library  is nothing 
more than a collection of pre-written functions—each designed to perform a specific task—that you can 
reuse in your own programs. This collection of related functions is grouped together into a library. The 
 pinMode()  function is one of the functions found in the Arduino function library. Indeed, a good amount of 
your learning effort is to discover what tasks have already been solved for you by one of the functions in the 
function library. 

 Okay, so how do you find out what those functions are and what they do? 

   How to Find Information About Library Functions 
 If you want more information about a function that you think is in the Arduino standard library, visit 
   http://arduino.cc/en/Reference/HomePage     , and you will see a page similar to that seen in Figure  2-3 .  

http://dx.doi.org/10.1007/978-1-4842-0940-0_1
http://arduino.cc/en/Reference/HomePage


CHAPTER 2 ■ ARDUINO C 

39

 Note how I have typed  pinMode()  into the search bar. If you then click the small magnifying glass on 
the right edge of the text box, the search program will search for more details on whatever you typed into 
the search text box (e.g.,  pinMode()  in our case). The search brings up a Google page for the  pinMode()  
function. Usually, the first reference shown is the one you would select. However, if you double-click the 
word “pinmode” to highlight it, then right-click and select  Find in Reference , the page seen in Figure  2-4  is 
found and displayed.  

  Figure 2-3.    Using the Arduino Language Reference       

  Figure 2-4.    The pinMode() description       

 

 



CHAPTER 2 ■ ARDUINO C 

40

 If you read the complete description, you will find that the  pinMode()  function is used to set the way in 
which a pin is to be used in the program. In the Blink program, the reference tells us that the statement 

  pinMode(13, OUTPUT);  

 means that Arduino pin number 13 is going to be used as an OUTPUT pin. Simply stated, the symbolic 
constant OUTPUT is also defined within the Arduino IDE, which means that we will be outputting data on 
pin 13. If we wanted to read some device or sensor attached to pin 13 as a data source, we would use the 
following: 

  pinMode(13, INPUT); // If we want to read a device attached to pin 13  

 All of the digital pins on the Arduino can be configured as OUTPUT or INPUT pins. 
 So, why pin 13? 
 As it turns out, almost all Arduino (and compatible) boards have a built-in LED tied to pin 13. By 

defining pin 13 for use as an OUTPUT pin, we can turn this onboard LED on and off under software control, 
hence the program name “Blink”. 

 I don’t like seeing numeric constants, like the preceding 13, simply stuck in a program’s source code. It 
would be much better if there were a way to give meaning to the number. I call such numbers  magic numbers  
because their purpose or derivation is often a mystery … especially if you are reading source code you didn’t 
write. You will see how to reduce the number of magic numbers in a program in Chapter   4    . 

 ■   Note    Although I have never found an Arduino-compatible board that didn’t have an onboard LED, this 
could be the case for a “homegrown” board. If that were the case, you could attach the anode of an LED to pin 
13, and connect the cathode to a resistor (220 ohm to 1000 ohm, 1/10W or larger is fine) , and run the other 
end of the resistor to ground (GND on the Arduino board). This would pulse the external LED when the Blink 
program is run.  

 The  pinMode()  function call is the only statement in the  setup()  function, so our Initialization Step 
consists of a single statement. Obviously, more complex programs can be expected to have more statements 
in  setup().  

 It is important for you to remember that the  setup()  function is only called once when the program 
first begins execution. This is why we can refer to  setup()  as the Initialization Step in our program. If you 
wish to call  setup()  a second time, you would have to press the Reset button on the μc board. The Reset 
button halts the current execution of the program and restarts it by calling  setup() . You can also reset the 
board by removing and reapplying power to the board. The  setup()  function is called automatically (on 
most newer Arduino boards) each time you upload a new version of the program code from your PC to 
the μc board. 

http://dx.doi.org/10.1007/978-1-4842-0940-0_4


CHAPTER 2 ■ ARDUINO C 

41

   THE BACKPACK ANALOGY  

 You will often read the phrase “calling a function” as well as “returning from the function” or even “return to 
the caller”. These are common idioms used by programmers, and they have a specific interpretation. Think 
of a function as a black box with front and back doors. Think of yourself as the person who marches through 
the program causing each program statement to execute. 

 The term “calling a function” means that any time a “function is called,” you put on a backpack, stuff it 
with any information this function may want (e.g., 13 and OUTPUT for our  pinMode()  function call, which are 
called  function arguments ), and then set off to “call on the function.” The door to the black box opens and 
you walk in and start executing whatever instructions are contained in the black box. If the black box needs 
information from the outside world, it takes that information (13, OUTPUT, which are now called  function 
parameters ) from your backpack before it begins its task. (I go into more details about parameters vs. 
arguments in Chapter   6    .) The black box then does its thing, and upon completing its task, it may (or may not) 
put some new information in your backpack. It then ushers you to the back door and sends you back to the 
point immediately following the program point that caused you to visit the black box in the first place. 

 This process of going back to that precise program point is called “returning to the caller” or “returning 
from the function.” Therefore, calling a function is nothing more than a journey to some set of pre-written 
program statements that are designed to accomplish a specific task. Once that task is complete, program 
control returns to the statement immediately following the function call.  

 So what is the second function argument in  pinMode() , named  OUTPUT,  all about and where is it 
defined in the program? A  function argument  is simply a piece of data that the function needs to have 
to complete its task.  OUTPUT i s a symbolic constant that can be thought of as a variable name that is 
embedded within the compiler. A  symbolic constant  is a name that is tied to a specific data value. There is a 
programming convention (not a rule) where symbolic constants are written in uppercase letters. Because 
C is case sensitive, you could define a variable named  output  and the compiler knows that it is a different 
variable than its own symbolic constant named  OUTPUT . 

 Why use symbolic constants? Simply stated, one reason is because it makes the program code easier to 
read. Which of the following would you rather read in a program? 

  pinMode(LED, OUTPUT);  

 or 

  pinMode(13, 1);  

 There are other reasons for using symbolic constants. I will explain them in later chapters. For now, 
however, simply think of symbolic constants as a series of uppercase letters that are tied to some predefined 
value with the intent of making the code easier to read.   

     The loop() Function 
 After the  setup()  function completes its work, every Arduino C program automatically calls the  loop()  
function. Stated differently, when the Initialization Step (Step 1) is completed via the function call to 
 setup() , we are ready for Step 2, the Input Step. Because there are no more statements in  setup() , the 

http://dx.doi.org/10.1007/978-1-4842-0940-0_6


CHAPTER 2 ■ ARDUINO C 

42

remaining Program Steps must be in the  loop()  function. The code for the  loop()  function is reproduced as 
follows: 

  // the loop function runs over and over again forever  
  void loop() {  
     digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)  
     delay(1000);            // wait for a second  
     digitalWrite(13, LOW);  // turn the LED off by making the voltage LOW  
     delay(1000);            // wait for a second  
           }  

 Inside the  loop()  function, the program calls a pre-written function named  digitalWrite(13, HIGH) , 
passing in two arguments to the  digitalWrite()  function: the I/O pin number to write to and the state we 
wish to place the I/O pin into ( HIGH  in this case). Once again,  HIGH  is a symbolic constant held within the 
compiler and is interpreted to mean we want to turn the pin on, which supplies a voltage (5V) to I/O pin 13. 
This voltage then turns on the LED. 

 Note the purposes the  digitalWrite()  function serves. First, it tells the function which I/O pin to change 
and what state to place the I/O pin in. Once the function receives these two pieces of information (via 
your backpack!), it places the LED in the desired state. In this case, the function turns the LED on. In other 
words, passing in the two pieces of information to  digitalWrite()  serves as the Input Step (Step 2) of our Five 
Program Steps.  digitalWrite()  also serves as part of the Processing Step (Step 3) because it takes the input 
data from the Input Step and changes the state of the LED according to the inputs it just received. Given 
these inputs, the LED is turned on at this point. That is, the function processes the input data and the LED 
“displays” (Step 4, Output Step) light. 

 You can probably guess what the  delay(1000)  call does. When the  delay(1000)  function call program 
statement is reached, the program puts the number 1000 into your backpack and you trundle off to the 
 delay()  black box. Once you’re inside the black box named  delay() , the code within the black box takes 
the value 1000 from your backpack and executes the code contained within the black box. In other words, 
 delay()  needs some information, called a function parameter, from the “outside world” to complete its task. 
If you look up the description for  delay()  (   http://arduino.cc/en/Reference/Delay     ), you will find that 
the function returns no value to the caller. Therefore, when  delay()  is finished doing its thing, it hands you 
an empty backpack and shows you the back door of the black box. Program control, therefore, resumes 
execution with whatever the next statement is after the  delay(1000)  statement. 

 The  delay(1000)  function call causes the program’s execution to pause for 1000 milliseconds (or one 
second). Because the LED is turned on, the one-second time delay has the effect of letting us observe the 
LED with illumination. If the calls to  delay()  function were left out of the program, the LED would be 
turned on and off for such a short period of time that our eye would not even be able to tell it was blinking. 
In an operational sense, therefore, the  delay()  function call serves as an extension of the Output Step (Step 4) 
of our Five Program Steps by letting us observe the current state of the LED. 

 As you probably guessed, the next call to  digitalWrite(13, LOW)  and its subsequent call to the 
 delay(1000)  function turns the LED off for one second. This is still part of the Process and Output steps. 
Turning the LED off is just as much an Output process as turning it on. 

 Once the  delay(1000)  function is finished, the closing brace of the  loop()  function is read. However, 
because  loop()  establishes what’s called a  program loop , program execution returns back to the first 
statement in the  loop()  function body and performs a second pass through the loop starting with 
 digitalWrite(13, HIGH)  again. This turns the LED back on. This sequence repeats until power is removed 
from the circuit, which means the LED simply sits there and blinks until the power is removed from the μc 
board, a component fails, or the cows come home. 

 Because the program is designed to loop forever, there really is no Termination Step (Step 5). Most 
microcontroller programs are written to chug along until they are stopped by some outside force (e.g., losing 
power or component failure). There are exceptions to this generalization, but they are relatively rare.  

http://arduino.cc/en/Reference/Delay


CHAPTER 2 ■ ARDUINO C 

43

     delay(): Good News, Bad News 
 The  delay()  function is an easy-to-use way of injecting a time delay into a program. That’s the good news. 
The bad news is that, during the delay time period, the Arduino board is essentially brain dead. That is, the 
central processing unit (CPU) is concentrating so hard on getting the time delay right, it can’t do anything 
else. In many applications, this isn’t a problem. However, imagine our fire alarm sensor situation with the 
new World Trade Center. In a building that large, there might be 10,000 fire sensors. If you used a polling 
method to read each sensor, and it takes a hundredth of a second for each “visit,” a round-trip through 
the sensor list will take 100 seconds. Now further suppose that the instant you leave a given sensor, it 
immediately detects a fire. It would be 100 seconds before you knew about the fire. Giving a fire a 100-second 
head start is not a good thing. 

 Because of this limitation of the polling method for reading sensors, most programmers would use 
what’s called an Interrupt Service Routine (ISR). Simply stated, all of the sensors are tied to an interrupt pin 
on the Arduino board, and if a fire breaks out, the sensor  immediately  sends a message to the interrupt pin 
and executes the code associated with the ISR, even if it’s not that sensor’s turn to be read. Therefore, using 
an ISR effectively does away with the 100-second delay. 

 Well … maybe. 
 If you are using  delay()  in your program, the Arduino CPU is comatose while  delay()  is doing its thing. 

That means that no ISR can be serviced until after the delay period is finished. So if you do a  delay(600000)  
call in your fire alarm program, the fire could get a 10-minute head start before you even know a fire has 
started! 

 There are better ways to put a delay in your program, which we will explore later on. If you’re curious 
right now, look at the program named BlinkWithoutDelay (File ➤ Examples ➤ Digital ➤ BlinkWithoutDelay). 
This program shows how to put a delay into a program, but still allow ISRs to interrupt things if necessary.   

     Summary 
 In this chapter you learned how to build program statements from operands and operators. You then 
saw how statements can be enlarged to statement and function blocks, ultimately leading to a complete 
program. You also learned the Five Program Steps and how they can be used to help design a program. 
Finally, these concepts were applied to a dissection of the Blink program example. With these preliminaries 
behind you, you can move on to learn about the various types of data you can use in your programs. 

  EXERCISES 

     1.    Name the basic building blocks of a programming language.     

 Answer: Operands, operators ➤ Expressions ➤ Statements ➤ Statement blocks ➤ 
Function blocks

    2.    What is a binary operator?     

 Answer: A binary operator is an operator that requires two operands to create an 
expression.

    3.    Why is an understanding of operator precedence important in an expression?     

 Answer: Operator precedence dictates the order in which subexpressions are evaluated in 
complex statements. Without this understanding, it is possible that a complex statement 
will not have the subexpressions evaluated in the order you wish, leading to erroneous 
results.



CHAPTER 2 ■ ARDUINO C 

44

    4.     Which of the Five Program Steps is least likely to appear in your programs, and 
why?     

 Answer: The Termination Step. The reason is because many μc programs are designed 
to run forever and may never reach a termination point unless power is removed or a 
component fails.

    5.    What is the purpose of the  /*  and  */  character pairs?     

 Answer: This sequence of characters mark the start and the end of a multi-line comment 
in a program. They are also useful in “commenting out” a chunk of code during program 
testing and debugging.

    6.     What does “calling a function” mean?     

 Answer: It means that program control is transferred from its current place in the program 
to the code associated with the function that is to be executed.

    7.    What does “return to the caller” mean?     

 Answer: Return to the caller occurs when program control finishes executing the code 
associated with a function and program control returns to the point at which the function 
was called.

    8.    When would using  delay()  be a poor program choice?     

 Answer: Because  delay()  prevents communication with any of the Arduino’s I/O pins while 
the  delay()  is being processed, it would be a bad choice with programs that use Interrupt 
Service Routines.

    9.    Write a general purpose accounting system for your Arduino.     

 Answer: Naw … just kidding.      



45© Jack Purdum 2015 
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming 
for the Arduino, DOI 10.1007/978-1-4842-0940-0_3

    CHAPTER 3   

 Arduino C Data Types           

 When we refer to a C data type, we are referring to the attributes that a piece of program data has. As you 
will learn, certain data types are better suited to specific tasks than other data types, even though more than 
one data type might work. Selecting the right data type often results in a program that runs faster and uses 
less memory. In the  m c world, where speed and memory are rare commodities, it pays to know what your 
data type choices are. In this chapter you will learn about the data types the Arduino C brings to the table. 
Arduino C supports almost all of ANSI C’s data types. 

 As mentioned in Chapter   2    , a  variable  is little more than a chunk of memory that has been given a 
name. When you define a variable, you must also tell the compiler what type of data is to be associated with 
that variable. The  data type of the variable is important because it determines how many bytes of memory are 
dedicated to that variable, and what type of data can be stored in the variable.  

 Byte? 
 As you probably know, computers only know two things: On (1) or Off (0). Decades ago, computer 

manufacturers decided to arrange these binary digits, or  bits , into groupings of 8 bits. Each group of 8 bits 
taken as a unit is called a  byte . Because a byte can only have two states, 1 or 0, bytes are most happy using 
base 2 arithmetic, rather than the base 10 that you are used to. If you recall your high school math, 2 8  is 
256. So a byte can have its bits arranged in 256 unique combinations. Because 0 is a valid number, a byte of 
computer memory can represent the values 0–255. I will have more to say about binary data later. 

 As you will learn later in this chapter, there are two basic types of variables: value types and reference 
types. If the variable is defined as a value type, there is a very specific range of numeric values possible with 
that data type. 

 A list of the basic  value data types  is presented in Table  3-1 .  

http://dx.doi.org/10.1007/978-1-4842-0940-0_2


CHAPTER 3 ■ ARDUINO C DATA TYPES

46

 ■   Note    There are several other data types that are defined for the Arduino IDE (e.g.,  long long ); however, 
because doing anything with them is relatively inefficient, I do not discuss them here.  

     Keywords in C 
 Each of the data types shown in Table  3-1  (i.e.,  boolean ,  char ,  int , etc.) is a keyword in C. A  keyword is any word 
that has special meaning to the C compiler . Because keywords are reserved for the compiler’s use, you cannot 
use them for your own variable or function names. If you do, the compiler will flag it as an error. If the compiler 
didn’t flag such errors, the compiler would get confused as to which use of the keyword to use in any given 
situation. 

 There are other C keywords that cannot be used to name a data type in your programs. Many of these 
keywords are for language constructs (e.g.,  for ,  while ,  struct , etc.) that are an integral part of the language. 
You will learn these keywords as we progress through the book. In other cases, pre-written functions like 
the  delay()  function you used in the last chapter should not be used for your own variable names. While 
not exhaustive, you can find a partial list of reserved C keywords at    http://arduino.cc/en/Reference/
HomePage     .  

              Table 3-1.    Arduino C Value Data Types   

 Type  Byte length  Range of values 

  boolean   1  Limited to logic  true  and  false  

  char   1  Range: –128 to +127 

  unsigned char   1  Range: 0 to 255 

  byte   1  Range: 0 to 255 

  int   2  Range: –32,768 to 32,767 

  unsigned int   2  Range: 0 to 65,535 

  word   2  Range: 0 to 65,535 

  long   4  Range: –2,147,483,648 to 2,147,483,647 

  unsigned long   4  Range: 0 to 4,294,967,295 

  float   4  Range: –3.4028235E+38 to 3.4028235E+38 

  double   4  Range: –3.4028235E+38 to 3.4028235E+38 

  string   ?  A null ( '\0' ) terminated reference type data built from 
a character array 

  String   ?  An reference data type object 

  array   ?  A sequence of a value type that is referenced by a single 
variable name 

  void   0  A descriptor used with functions as a return type when 
the function does not return a value 

http://arduino.cc/en/Reference/HomePage
http://arduino.cc/en/Reference/HomePage


CHAPTER 3 ■ ARDUINO C DATA TYPES

47

     Variable Names in C 
 If you can’t use keywords for variable or function names, what can you use? There are three general rules for 
naming variables or functions in C. Valid variable names may contain the following:

    1.    Characters a through z and A through Z  

    2.    The underscore character (_)  

    3.    Digit characters 0 through 9, provided they are not used as the first character in 
the name     

 Just about everything else is not acceptable, including the C keywords. Note that the rules also mean 
that punctuation and other special non-printing characters are not allowed either. 

 If you happen to use a variable name that is also the name of an Arduino library function, you will run 
into problems when you try to use the two in the same program. If you named a variable  delay  and then 
tried to call the  delay()  function, the compiler would get cranky and complain because it is confused by the 
variable and the function that share the same name. The rule is simple: Don’t do that! Surely you can think of 
a variable name that doesn’t collide with an existing function name. 

 Valid variable names might include the following: 

  jane             Jane                  ohm                    ampere           volt  
  money            day1                  Week50_system          XfXf  

 Using the same rules, the following would not be valid names: 

  ̂carat           4July                 -negative              @URL  
  %percent         not-Good              This&That              what?  

 As an exercise, explain to yourself why each of these erroneous variable names is wrong. 
 Given these limits, how does one create a “good” variable name? As a general rule, I like variable names 

that are long enough to give me a clue as to what they do in a program, but short enough that I don’t get tired 
of typing their name. Using this notation, variable names begin with a lowercase letter, with each subword 
capitalized. (This form of notation is often referred to as  camel notation .) The following are examples of 
camel notation style: 

  myFriend         togglePrinter         emptyPaperTray         closeDriveDoor  

 I think this style makes it easy to read the variable names. C could care less which style you use. 
However, keep in mind that it is unlikely that you will write perfect (error-free) code every time you write a 
program. Using variable names that make sense and are easy to read makes debugging just that much easier. 
Also keep in mind that C is case sensitive, which means that  myData  and  MyData  are two different variables. 

 With that in mind, let’s examine the common data types available for use in your C programs.  

     The boolean Data Type 
 The  boolean  data type is limited to two values or states:  true  or  false . These two values are unchangeable 
(i.e., constants) that are defined within the compiler and are the only two values a  boolean  variable can 
assume. Therefore, the following is a valid data definition for a  boolean  variable: 

  boolean mySwitch = false;  



CHAPTER 3 ■ ARDUINO C DATA TYPES

48

 This is probably going to be used to store the state of a switch (e.g., the switch state is  true  when the switch 
is On and it is  false  when the switch is Off). However, you may also see code like the following fragment: 

  boolean switchState;  
        // some more program statements  
  switchState = ReadSwitchState(whichSwitch);  
  if (switchState) {  
        TurnSwitchOff(whichSwitch);  
  } else {  
        TurnSwitchOn(whichSwitch);  
  }  

     Walking Through the Function Call to ReadSwitchState () 
 Even though we don’t cover the  if  statement until the next chapter, you can probably figure out what’s 
going on here. The  ReadSwitchState()  function returns a  boolean  value that is  true  if the switch is on, or 
 false  if the switch is off. Recall from Chapter   2     what the function call statement means. When you call the 
 ReadSwitchState()  function, you grab your backpack, stuff the current value of  whichSwitch  into it, and 
jump to the black box that contains the  ReadSwitchState()  code. Once inside, the code takes the value 
of  whichSwitch  out of your backpack and uses it to process the code in its function block. Note that the 
 ReadSwitchState()  function sends a value back to the caller. We know that because of the assignment 
operator ( = ) that appears before the function call statement. Therefore, just before you leave the black box, 
the function grabs your backpack and puts a value in it that was calculated as the result of the function call. 
The function then tells you that you are free to return to the caller. 

 However, when you return from the call to the  ReadSwitchState()  function, the assignment operator 
causes the code to grab your backpack, take out the value put there by function call, and assign that value 
into  switchState . (Technically, your backpack is actually something called the program stack, but we’ll flesh 
out that detail later in the book.) Because  switchState  is defined as a boolean variable, we know that is the 
type of data that is being returned from the function call to  ReadSwitchState()  (i.e., that’s the type of data the 
function stuffed into your backpack). Therefore, because  switchState  is defined as a  boolean  data type, only 
the values  true  or  false  can be stored in  switchState .  

     Binary Numbers 
 Because digital computers only understand two states, On (1) and Off (0), they use a binary (base 2) 
numbering system. Alas, you and I grew up with the base 10 numbering system, so base 2 seems a bit strange 
at first. However, it’s not hard to understand how a base 2 number is constructed. 

 Consider Table  3-2 . You can think of a computer  bit  ( b inary  i n t eger) as a small unit of data that can 
assume only one of two values: on (a value of 1) or off (a value of 0), which is consistent with the binary 
nature of digital computers. Most CPUs group bits together into a single entity called a  byte . Each  byte is 
comprised of 8 bits . Most programming languages start counting things with the number 0 rather than 1. 
Therefore, the bits in a byte begin with bit 0 and end with bit 7.  

 Because the “high” bit for an 8-bit byte is bit 7, that bit is used as the  sign bit  if the data can have positive 
and negative values. If the sign bit (i.e., bit 7) is turned on for a  char  data type, for example, the number is 
interpreted as a negative value. If you add up all the values “to the right” of bit 7 (i.e., line 2 in Table  3-2 , or 
64 through 1), you’ll find that it totals to 127. If you look at the range for a  char  data type in Table  3-1 , you’ll 
see the highest positive value is 127. If bit 7 is turned on for a  char , the interpretation is that this is a negative 
number, so the value becomes –128. This should help you understand how the ranges are set for the different 
data types. For an unsigned data type (e.g.,  unsigned char ,  unsigned int ,  unsigned long ), there is no need for a 

http://dx.doi.org/10.1007/978-1-4842-0940-0_2


CHAPTER 3 ■ ARDUINO C DATA TYPES

49

 Now, let’s examine Table  3-2  in greater detail. You can see how the bit positions correspond to various 
powers of 2. For example, if you take the value 2 and raise it to the 6 th  power, the resulting value is 64. If you 
recall your high school math, any number raised to the 0 th  power is 1. Moving from Bit 0 to the left, you can 
see in row 2 how the value doubles as you move to the next higher bit position. 

 The question becomes: How can I form a binary value? Suppose you want to form the decimal (base 10) 
value 65. To create that value, you would need to turn on bits 0 and 6 (see the last row in Table  3-2 .) Because 
2 to the 0 th  power is 1, and 2 to the 6 th  power is 64, adding these two values together produces 65, binary 
01000001. So, how would you create the value 5? If you turn on bits 2 and 0, you get a value of 5 
(i.e., 00000101). What about the value 10? In that case, turn on bits 3 and 1 (i.e., 00001010). 

 Wait a minute! It appears that shifting all the bits to the left one position is the same as multiplying the 
number by 2. Likewise, shifting all the bits to the right one place is the same as dividing by 2. That’s exactly 
right. Arduino C supports  bit shifting.  You may see examples of bit shifting in some code you look at down 
the road. I will have more to say about that later on. Bit shifting only works with integral data types.   

     The char Data Type and Character Sets 
 When computers first came into existence, all of the characters that were deemed necessary could be 
represented with relatively few values. Your keyboard, for example, probably has fewer than 127 keys on it. 
Because of the relatively small number of characters needed, the American Standard Code for Information 
Interchange (ASCII) character set was developed based on 8-bit (i.e., 1 byte) values. By treating the eight bits 
as an unsigned quantity, the ASCII character set was later extended to include limited graphic characters, 
too. The ASCII character set was the norm for decades. However, as computers fanned out across the 
globe, the need to extend the character set became obvious. The Japanese Kanji character set, for example, 
has almost 2,000 characters in it. Clearly, these characters cannot be represented in an 8-bit byte. For this 
reason, the Unicode character set was developed. 

 The  Unicode character set  is based upon a 2-byte value for each character. From a programmer’s point 
of view, Unicode characters are unsigned quantities, hence over 65,000 characters can be represented. (See 
the 2-byte range of values in Table  3-1 . For details on the Unicode character set, see    www.unicode.org/
charts     . For the ASCII character set, see    www.asciitable.com     .) Because of the desire to “internationalize” 
computer software, more and more programmers moved to the Unicode character set. However, there were 
diehard ASCII programmers, too. Perhaps as a compromise, there are Unicode character sets for different bit 
lengths. For example, UTF-8 is the Unicode Transform Format for 8-bit character sets. Now you can select 
from UTF-8, UTF-16, and UTF-32. 

 We will stick with the ASCII (1 byte) character set in this book. If you need Unicode in your software, 
you can cobble it together using Arduino C. However, I will leave that as an exercise for you, if you’re 
interested. 

      Table 3-2.    The Base 2 Interpretation of an 8-Bit Data Value   

 Bit 7  Bit 6  Bit 5  Bit 4  Bit 3  Bit 2  Bit 1  Bit 0 

 Power of 2  2 7   2 6   2 5   2 4   2 3   2 2   2 1   2 0  

 Decimal value  128  64  32  16  8  4  2  1 

 Binary number  0  1  0  0  0  0  0  1 

 Decimal value  64  1 

sign bit—all values are positive, so the high bit is just another positive bit available for use. This explains why 
the maximum value for an  unsigned  number is about twice that of a signed data type. 

http://www.unicode.org/charts
http://www.unicode.org/charts
http://www.asciitable.com/


CHAPTER 3 ■ ARDUINO C DATA TYPES

50

     Generating a Table of ASCII Characters 
 One of the sample programs included with the Arduino C IDE is one that can generate a table of the 
ASCII character set. You can see the menu sequence to follow in Figure  3-1 . The File ➤ Examples ➤ 
04.Communication ➤ ASCIITable menu sequence loads the source code for the program. Compile and 
upload the program as you did in Chapter   1     by pressing the button with the arrow on it (the Compile/
Upload button). Now select the Tools ➤  Serial  Monitor menu choice or simultaneously press the Control, 
Shift, and M keys at the same time. This loads the  Serial  monitor so you can view the data being sent back 
to your PC.  

 Once again, we won’t go through the code because we don’t have enough under our belt yet to make 
it worthwhile. (You will write your first program in the next chapter.) For now, the ASCIITable.ino program 
will at least allow you to see the ASCII characters displayed as characters, decimal (base 10), hexadecimal 
(base 16), octal (base 8), and binary (base 2) numbers. 

  Figure 3-1.    Loading the ASCIITable sample program       

 Figure  3-2  presents part of the output from the ASCIITable program. By examining the output from the 
program, you can see the relationship between the different numbering systems.  

 

http://dx.doi.org/10.1007/978-1-4842-0940-0_1


CHAPTER 3 ■ ARDUINO C DATA TYPES

51

 If you look at the extreme left edge of Figure  3-2 , toward the bottom, you’ll see the character ‘A’. If you 
wanted to create a variable and initialize it to the value for the letter 'A', you could use this: 

  char c = 'A';  

 After the compiler processes this statement, variable  c  would contain the letter 'A'. Note that  character 
constants  that are used in an assignment statement are surrounded by  single quote marks . If you read the 'A' 
line in Figure  3-2 , you can see that the numeric value 65 represents the letter 'A'. What this means is, when 
you touch the Shift key and the letter A on your keyboard, the value 65 is transmitted to your computer. 
If you prefer to think in base 16 numbers, the value 41 is sent (i.e., 16 * 4 + 1 = 65). In base 8, the value is 101 
(i.e., 8 * 8 + 0 + 1 = 65). However, since computers only understand 0s and 1s, what the computer actually 
receives for the keyboard character 'A' is the binary value 01000001. (Figure  3-2  leaves the leading 0 off of the 
binary display for the ASCII table because the 8 th  bit is always 0.)   

     The byte Data Type 
 The  byte  data type is also an 8-bit value, but there is no sign bit, so its range is almost twice that of a  char . 
(Can you explain why an  unsigned char  has the same range as a  byte ? Think about it.) You may use the  byte  
data type to store any value between 0 and 255. If you ever find yourself in a situation where you are running 
out of memory for data storage, changing the data from an  int  data type to a  byte  might save the day. 

 Given that  byte  and  unsigned char  have the same range of values, how can you decide which to use? 
Well, from the compiler’s point of view, it doesn’t matter. However, as you gain experience, you’ll find 
yourself falling into conventions that most C programmers use. That is, if you are reading data from a 
sensor, many sensors route their data through a port one byte at a time. As a result, programmers often use 

  Figure 3-2.    Part of the ASCII character set       

 



CHAPTER 3 ■ ARDUINO C DATA TYPES

52

the  byte  data type to represent raw data coming in through a data port. On the other hand, all flavors of the 
 char  data type are often associated with textual (i.e., ASCII) data. The choice is yours. 

 The most commonly used 8-bit data type is the  char . However,  byte  is available when you need it.  

     The int Data Type 
 The  int  data type is an integer value in C and is a signed quantity. Because an  int  is a signed quantity, an  int  
can assume either positive or negative whole numbers (see Table  3-1 ). 

 Fractional values are not allowed for any integer data types. If a math operation with integer values 
yields a fractional value (e.g., 9 / 5), that fractional value is truncated ( not  rounded) and only the whole 
number is retained (i.e., the result is 1,  not  1.8 or 2). 

 In Arduino C, an  int  data type is a 16-bit value, as shown in Table  3-1 . In some other languages 
(e.g., Java, C#, C++) an  int  is usually a 32-bit (4-byte) entity. If you have programmed before in some of these 
other languages, you need to be aware that an  int  in Arduino C has a smaller numeric range than it carries in 
other programming languages. (Often these other languages refer to a 16-bit  int  as a  short int . The actual 
bit-size of an  int  data type is the bit size of the registers in the host  m c. A register is an internal piece of 
hardware buried within the  m c that is designed to hold a group of bits. For the Arduino boards we are using, 
these registers are designed to hold 8 bits. ) 

 Because you can also have  unsigned int  data types, you can increase the upper limit of positive 
values by almost a factor of two. However, the price of this greater range is that unsigned data types 
cannot store negative values. The  int  data type is used more frequently than the  unsigned int  data type in 
most programs.  

     The word Data Type 
 As you can see in Table  3-1 , the  word  data type has the same storage requirements and range of values as 
an  unsigned int . Given that’s the case, why even have a  word  data type when an  unsigned int  could be used 
instead? The term  word  is actually more associated with assembly language programming and reflects the 
largest group of bits that can be handled by the CPU with a single instruction. While there is no hard-and-
fast rule about using the  word  data type, you tend to see it used most often as a variable that is involved with 
bit manipulations or when hexadecimal (base 16) numbers are being used instead of decimal (base 10) 
numbers. You will study bit manipulations in a later chapter. For the moment, you can think of the  word  data 
type as being similar to an  unsigned int,  but used to suggest low-level data manipulations.  

     The long Data Type 
 Because the  long  data type uses 32 bits (4 bytes), it has an approximate range of values of between plus or 
minus two billion. Like the other data types discussed so far, the  long  data type is also an integer data type 
and, as such, cannot be used to represent fractional values. However, because there are 2 31  possible values 
(the 32 nd  bit is the sign bit again), the range of values is very large. As a general rule, if you are certain that all 
possible data values for a program fall within the range of an  int , using an  int  is a better choice than a  long  if 
for no other reason than the memory requirements for a  long  are twice that of an  int . Also, the Atmel family 
of  m cs that we are using here all use 8-bit (1 byte) registers. Therefore, shuffling 2 bytes of data for an  int  will 
usually be faster than moving 4 bytes of data for a  long . Although the performance hit for a  long  may not be 
noticeable except where you’re spinning through a tight loop of values, it’s still worth keeping the data type 
trade-offs in mind.  



CHAPTER 3 ■ ARDUINO C DATA TYPES

53

     The float and double Data Types 
 Arduino C does allow you to use floating point numbers. That is, you can have data values in your program 
that use fractional values. In fact, if you look at the  Arduino.h  header file (usually located at  \hardware\
arduino\cores\arduino ), you will find symbolic constants defined for  PI ,  TWO-PI , and so forth. In that file, 
 pi  is defined as: 

  #define PI 3.1415926535897932384626433832795  

 So, you could define a  float  as 

  float pi = PI;  

 and the compiler will substitute the number 3.1415926535897932384626433832795 for  PI  and assign that 
value into  pi . (Recall that C is case sensitive, so  pi  and  PI  are viewed as different entities in C.) The range of 
values for a  float  is roughly plus or minus 3.4 times 10 to the 38 th  power. That’s a big number: A value with up 
to 38 digits. Each  float  requires 4 bytes of storage space. 

 In most languages, a  double  data type has twice the storage requirements as a  float  (i.e., 8 bytes instead of 
4 bytes). As such, the range of values is much larger (often some value to the 308 th  power.) However, Arduino C 
makes no distinction between a  float  and a  double . Both data types are treated equally in Arduino C. 

     Floating Point Precision 
 The  precision  of a number refers to  the number of significant digits  you can expect for that number. In Arduino 
C, the highest precision you can expect for a floating point value is 7 digits of precision. What this means is 
that even though you can represent a floating point number with 38 digits, only the first 7 are significant. The 
remaining 31 digits are the computer’s best guess as to what the digits should be. Given that fact, it seems 
misleading that  PI  is defined the way it is. For all practical purposes,  PI  could be defined as 

  #define PI 3.141592  

 and forget the rest of the digits because the computer won’t be able to represent those digits in any math 
operation with greater precision than six or seven digits. However, if you’re just going to display  pi  and not 
manipulate it in any way, then  PI  gives you that constant with considerable precision. 

 ■   Note    In some Arduino literature, you will see variables defined using  uint8_t ,  uint16_t , or perhaps other 
terms that are similar. These constants are used to help define the data type for the underlying C++ compiler. 
It’s pretty easy to figure out what they mean. For example,  uint8_t  translates to an  unsigned int  comprised of 
8 bits. (The  _t  element helps to mark it as a data type.) Unless stated otherwise, we use the standard C data 
types presented in Table  3-1 .    

     The string Data Type 
 A  string  is a sequence of ASCII characters treated as a single entity. In other words, it’s a string of characters. 
The string data type may be implemented two different ways. The first we shall discuss is to define the string 
as a character array. An  array  is nothing more than a grouping of one or more elements of a data type and 



CHAPTER 3 ■ ARDUINO C DATA TYPES

54

each of those elements share a common name. (We will cover arrays in detail in Chapter   5    .) In this case, you 
can define a string as 

  char myString[15];  

 which allocates enough memory space for a string with 14 characters in it. Note that the base data type for a 
string is an array of  char s. 

 Wait a minute.… Why 14 characters and not 15? 
 The reason is because C needs to append a null character ( '\0' ) to the end of the character array for 

the compiler to use the  char  array as a  string  data type. The compiler uses this null byte to mark the end of 
the string. Therefore, any  string  variable is limited to the number that appears within the brackets minus 1. 
In our example, we have set aside enough memory for 15 characters. Because the last of the characters must 
be used by the  string  termination byte (i.e., the null character,  '\0' ), we can only use 14 characters for the 
actual string data. Keep in mind, if you forget the null termination character,  '\0' , for the string, don’t be 
surprised when your code seems to be marching through memory without stopping. 

 Arduino C is smart enough to know when to add the null termination byte in many cases. For example, 
all of the following are valid ways to define and initialize a  string  variable using a character array. 

  char name[] = "Jane";  
  char name[5] = "Jane";  
  char name[100] = "Jane";  
  char name[4] = "Jane";   // Uh-oh!.  

 In the first example, note how the brackets following the variable name are empty (e.g.,  name[] ). 
The reason is because we decided to let the compiler figure out how many bytes of storage are needed based 
on the number of characters appearing between the double quote marks on the right side of the assignment 
operator. Since the name Jane has 4 characters, the compiler sets aside 5 bytes of storage to make sure there’s 
enough for the name plus the null termination character. 

 The second form simply has the statement hard-code the 5 bytes that are needed. The last form 
reserves 100 bytes of storage, where the first four contain the characters for “Jane” and the 5 th  character is 
the null character ( \0 ) that terminates the string. This third form would allow you to expand  name[]  up to 99 
characters in length at some other point in the program, if needed. (You know why it’s 99 characters.) In the 
last example, there is no room for the null termination character, so the compiler complains that the string is 
too long. 

 So, which is the “best” option to use? Personally, I like the first statement where the size is missing 
between the array brackets. There are two reasons for my choice. First, the compiler is  really  good at 
counting—even better than me, especially when I’m tired. Second, if I find out Jane actually prefers to be 
called Janie, I only have to edit her name, not the array size. Still, because all three forms work, your needs 
and preferences will dictate the form you choose. Keep in mind, however, the third form can be very wasteful 
of precious bytes of memory. 

 You can also initialize a string on a character-by-character basis, if you wish. In that case, surround each 
character with a single quote mark, each character separated from the next by a comma. ( Single quote marks 
are used to denote a single character constant. Double quotes are used for a sequence of characters, or a string, 
as seen earlier. ) Take a look at this example: 

  char name[] = { 'J', 'a',  'n', 'e', '\0'};  
  char name[5] = { 'J', 'a',  'n', 'e', '\0'};  
  char name[] = { 'J', 'a',  'n', 'e'};  
  char name[5] = { 'J', 'a',  'n', 'e'};  

http://dx.doi.org/10.1007/978-1-4842-0940-0_5


CHAPTER 3 ■ ARDUINO C DATA TYPES

55

 Notice that the compiler is smart enough to know the null termination character must be added, even 
if you don’t explicitly write it in the initializer list. Also notice that when you initialize a character array on 
a character basis, the initializer list starts with an opening brace ( { ) and terminates the list with a closing 
brace ( } ). The characters within the list are surrounded by single quote marks, each separated from the 
other by a comma.  

     String Data Type 
 The  String  data type is different than the string data type that is built up from the  char  data type. (Note 
the uppercase letter S for this data type.) The String data type is actually a C++ class that is built up from 
the  string  data type but is treated as an object rather than a simple character array. What this means is 
that you have a lot of built-in functionality with the  String  data type that you would have to code yourself 
with the  string  data type. For example, suppose you have a sequence of characters that you read from a 
sensor into a  String  variable named  myData . Further suppose you need to convert them all to uppercase 
letters. 

 If you defined  myData  as a  String  object, you could perform the conversion simply as 

  myData = myData.ToUpperCase();  

 and you’re done! The reason this works is because, within the  String  object is a method that contains the 
code to do the conversion for you. (Recall that C++ refers to functions that are buried in the class as a 
method.) You simply define the variable as: 

  String myData = String(100);  

 This defines a  String  named  myData  with enough space for 99 characters. To use a method that is built 
into a class, follow the variable name you’ve given the class with a period (called the  dot operator ) followed 
by the method you wish to call. For example: 

  myData = myData.ToLowerCase();  

 Such functionality is common with programming languages like C++, C#, and Java that support the 
object-oriented programming (OOP) paradigm. (Chapter   14     presents a quick overview of OOP.) While 
Arduino C is not an OOP language, it is nice that you can use some OOP features. Table  3-3  shows some of 
the methods that are available when you use  String  objects.  

    Table 3-3.    Built-in String Functions   

 Function  Purpose 

  String()   Define a  String  object 

  charAt()   Access a character at a specified index 

  compareTo()   Compare two  Strings  

  concat()   Append one  String  to another  String  

  endsWith()   Get the last character in the string 

  equals()   Compare two  Strings  

(continued)

http://dx.doi.org/10.1007/978-1-4842-0940-0_14


CHAPTER 3 ■ ARDUINO C DATA TYPES

56

 While we’re not ready to use all of these functions now, they are presented here for completeness. We 
will use some of them in later chapters. 

     Which Is Better: String or strings Built from char Arrays? 
 Listing  3-1  shows a program that uses two  String  data type variables and adds them together to form a new 
 String , and then displays it on the  Serial  monitor. 

   Listing 3-1. A Program to Concatenate Strings 

  void setup() {  
    // put your setup code here, to run once:  
    Serial.begin(115200);  
    String firstName = "Jack ";  
    String lastName = "Purdum";  
    String fullName = firstName + lastName;  
    Serial.println(fullName);  
  }  
  void loop() {}   

 The program does its job and uses 3626 bytes of memory when using a  String  class object. 
 Now let’s write a program that uses character arrays instead of the  String  class object. The code appears 

in Listing  3-2 . 

 Function  Purpose 

  equalsIgnoreCase()     Compare two  Strings , but ignore case differences  

  getBytes()   Copies a String into a  byte  array 

  indexOf()   Get the index of a specified character 

  lastIndexOf()   Get the index of the last occurrence of a specified character 

  length()   The number of characters in the string, excluding the null character 

  replace()   Replace one given character with another given character 

  setCharAt()   Change the character at a specific index 

  startsWith()   Does one string begin with a specified sequence of characters 

  substring()   Find a substring within a  String  

  toCharArray()   Change from  String  to character array 

  toLowerCase()   Change all characters to lowercase 

  toUpperCase()   Change all characters to uppercase 

  trim()   Remove all whitespace characters from a  String  

Table 3-3. (continued)



CHAPTER 3 ■ ARDUINO C DATA TYPES

57

    Listing 3-2. A Program to Concatenate Character Arrays 

  void setup() {  
    // put your setup code here, to run once:  
    Serial.begin(115200);  

    char myName[12] = "Jack ";  
    char lastName[] = "Purdum";  
    strcat(myName, lastName);   // A standard library function to concatenate  
                                // character arrays  Serial.println(myName);  
  }  
  void loop() {}   

 The program shown in Listing  3-2  displays the same results, but only uses 2044 bytes of memory. Given 
how scarce memory is in the  m c world, most programmers do not use the  String  class for processing string 
data. True, the  String  class is convenient, but at a price of increasing memory demands by over 40 percent 
seems too expensive. For that reason, we concentrate on string data that is built from  char  arrays.   

     The void Data Type 
 Programmers argue whether the  void  data type is really a data type at all. The term  void  really means the 
absence of a useful data type. One use for the  void  keyword is when it is used with functions to show that a 
function does not return a useful value. For example, if you look at the ASCII table program, both the  setup()  
and l oop()  functions are defined as: 

  void setup() {  
          // the setup code body  
  }  

  void loop() {  
          // the loop code body  
  }  

 The use of  void  here means that no data is returned from either of these two functions. Using our 
backpack analogy,  void  means that the function puts nothing in the backpack before it shows you the back 
door of the black box. You are returning to the caller with an empty backpack. As such, there is no reason 
for code to be generated to unpack your backpack upon return from a  void  function, since there is nothing 
useful inside your backpack. 

 Another use of  void  is to say that no information is passed in the form of parameters to the function. 
This means that you can leave your backpack on the porch when you call a function, because nothing’s 
stuffed into it anyway. In other words, you could write the two functions as 

  void setup(void) {  
          // the setup code body  
  }  

  void loop(void) {  
          // the loop code body  
  }  

 and the program would compile and run exactly as before. That is, “empty” parentheses means the function 
is defined with a  void  argument list. Most programmers who use Arduino C do not use the keyword  void  



CHAPTER 3 ■ ARDUINO C DATA TYPES

58

between the opening and closing parentheses of a function. Personally, I like the use of  void  in this context, 
as it serves to confirm that no information is being passed into the black box from the outside world. I will 
admit, however, that I am likely a crowd of one who likes this convention.  

     The array Data Type 
 Virtually all of the basic data types support arrays of those types. An  array  is little more than  a collection of 
identical data types that share a common variable name . You’ve already seen examples of character arrays. 
The following statements show some other array definitions: 

  int myData[15];  
  long yourWorkDay[7];  
  float temp[200];  

 Each of these statements defines an array of a specific type. Suppose we use the following data 
definition: 

  int val[4];  

 Let’s further assume that the compiler places the array starting with memory address 500. You can 
envision an array like the one shown in Figure  3-3 .  

val[0]

500 502 504 506

val[1] val[2] val[3]

  Figure 3-3.    How an array of ints looks in memory       

 Because each element of the array uses an “ int -sized” chunk of memory, which we know from Table  3-1  is 
2 bytes, you can see that the first element of the array,  val[0] , uses locations 500 and 501. The second element 
of the array ( val[1] ) uses memory locations 502 and 503, and so on. There are a number of things we can 
generalize from Figure  3-3 . 

     Array Generalizations 
•     The number of array “units” are called  array elements . The array definition, like 

 int val[4] , tells us that the compiler creates the array with 4 array elements.  

•   An  array index  tells us which element of the array is being referenced.  

•   Array elements always begin their index with 0, not 1. That is, the first element in the 
array is  val[0] , not  val[1] . Sometimes you will hear this fact referred to as  zero-based 
indexing .  

•   Because array elements are numbered starting with 0, we can derive the  N – 1 Rule : 
The highest valid array index is always 1 less than the number of elements in the 
array. In the case of  int val[4] , the number of elements is 4, but the highest valid array 
index is 3 (see Figure  3-3 ).  



CHAPTER 3 ■ ARDUINO C DATA TYPES

59

•   Trying to index into an array using an index higher than dictated by the N – 1 Rule 
may appear to work, but often results in spectacular program failure.    

 I will postpone additional details about arrays until later chapters. If we need any specifics before that 
chapter, I will be sure to point them out.   

     Defining vs. Declaring Variables 
 Most programmers use the terms “define” and “declare” as if they were the same.  They are not!  If you 
learn nothing else in this book, please let it be that defining a variable and declaring a variable are entirely 
different animals. To illustrate this difference, let’s take a simple definition of an integer variable named  val : 

  int val;  

 Although this may seem like an innocuous statement, there is a lot of stuff going on behind your 
back. Let’s walk through what’s actually going on. While I’ve taken a few liberties to make things easier to 
understand, the basics described here are essentially what actually happens. 

     Language Errors 
 First, when the compiler sees this statement, the first thing it does is check the statement for errors. There 
are basically three types of program errors: syntax errors, semantic errors, and logic errors. A  logic error  
usually means you’ve implemented an algorithm badly. This type of error usually manifests itself with a 
program that compiles without error, but gives the wrong results. A  syntax error  occurs whenever you write a 
program expression that does not follow the rules of the language being used. A  semantic error  occurs when 
you follow the rules of the language, but use the wrong context. For example, English grammar rules say a 
sentence needs a noun and a verb. The sentence “The dog meowed.” follows the syntax rules, but it breaks 
the semantic rules because dogs don’t meow. If the compiler detects either type of error, you get one of those 
ugly orange error messages displayed at the bottom of the IDE. However, since our statement is correct, the 
compiler then moves to the next phase of the compile process.  

     Symbol Tables 
 The next step causes the compiler to scan its symbol table to see if  val  has already been defined in the 
program. Table  3-4  shows a simplified symbol table. (My software company produced C compilers and our 
symbol table had just under two dozen columns in the symbol table. The ellipsis (…) is used to denote the 
added complexity one would actually find in a real symbol table.) Simply stated, a symbol table is a compiler 
construct that keeps track of the variables you’ve defined in a program.  

     Table 3-4.    A Simplified Symbol Table   

 ID  Data type  Scope  lvalue  … 

  myData    int   0  600  … 

 x   float   0  610  … 

 What Table  3-4  shows is that two variables,  myData  and  x , are already defined in the program. The ID 
column stands for Identifier and is the name for each defined variable. Often you will hear programmers use 
the term “identifier” instead of “variable name.” Operationally, they are the same. You can see that  myData  



CHAPTER 3 ■ ARDUINO C DATA TYPES

60

is an  int  data type, whereas  x  is a  float . Both variables have a scope level of 0 (an explanation of which I will 
defer for later.) 

 You can think of the first three columns as an attribute list for a variable. An  attribute list  is nothing 
more than terms that are used to describe something. For example, an attribute list for me might be: male, 
six-feet tall, and two years younger than dirt. The attribute list for  myData  is: an  int  data type, scope level 
0, and an lvalue of 600. The lvalue column presents the memory address of where each variable resides in 
memory. Therefore, reading the attribute list for  myData  from the symbol table tells us that we can find the 
integer variable residing at memory location 600 in SRAM memory.  

     lvalues and rvalues 
 An  lvalue  refers to the memory location where a particular data item resides in memory. Therefore,  the 
lvalue for a data item is the memory location where that item is stored.  For lvalues to make sense, consider 
what happens after the compiler has determined that our statement to define  val  is syntactically correct. 
The next thing the compiler does is check to see if you have already defined a variable named  val . If you had, 
there would already be an entry in the symbol table for  val . If that were the case, the compiler would issue 
a “redeclaration error” for  val . (As you will learn shortly, this error message should be “redefinition error”.) 
Because there is no definition for  val  at this point, everything looks good so far. 

 So far, the symbol table now looks like Table  3-5 .  

      Table 3-6.    The Symbol Table After Adding New Variable val   

 ID  Data type  Scope  lvalue  … 

  myData    int   0  600 

  x    float   0  610 

  val    int   0  625 

 It is important to note that the lvalue for  val  is still unknown. That is,  val  doesn’t have a dedicated place 
to live in memory yet. 

 Still, because there is no duplicate definition error, the compiler sends a message to the system’s Memory 
Manager (MM). In essence, the compiler sends a message to the MM that says: “Hey, MM! It’s me … the 
compiler. My programmer needs 2 bytes of free memory. Can you fulfill my request?” At that point, the MM 
scans its list of available free memory, and likely finds two free bytes somewhere. We’ll assume the free 
memory it finds resides at a starting memory address of 625. The MM returns a message to the compiler with 
the 625 memory address. 

 The compiler then issues a message: “Hey, Arduino! It’s me … the compiler. You can use the 2 bytes of free 
memory starting at memory address 625.” At that point, the compiler changes Table  3-4  to look like Table  3-6 .  

   Table 3-5.    The Symbol Table After Syntax Checking on val   

 ID  Data type  Scope  lvalue  … 

  myData    int   0  600 

  x    float   0  610 

  val    int   0  ??? 



CHAPTER 3 ■ ARDUINO C DATA TYPES

61

 Note what has happened here. We now have a memory address where the new variable  val  lives. You 
have  defined  variable  val  because it now has a known memory address, or lvalue. Therefore …

•    a data item is  defined  if and only if it has a known lvalue in the symbol table  

•   a data item is  declared  if it exists in the symbol table, but does not have an assigned 
lvalue    

 Memorize the difference between the two and don’t be afraid to correct other programmers who mix up 
the two terms. The distinction is important, as you will find out later. 

 You will see an example of a data declaration later in the book. For now, however, keep in mind that 
a  data definition  means you can locate a variable using its lvalue. A data declaration is nothing more than 
an attribute list for a data item … it has no lvalue. That is, data declarations for a data item tell you its ID, its 
type, and its scope level, but it does not yet exist in memory. Data declarations are used primarily for data 
type checking purposes. 

 We can depict the lvalue with the simple diagram shown in Figure  3-4 , which reflects the state of the 
symbol table, as seen in Table  3-6 . That is,  val  has been defined because it has a known lvalue (i.e., 625) and, 
therefore,  val  exists in memory starting at memory address 625. (The term  lvalue  comes from the old assembly 
language programming days and stood for “location value,” or a reference to where a data item was stored in 
memory. Some students find it easier to remember “left value” since the lvalue forms the “left leg” of Figure  3-4 .)  

VAL

R VALUEL VALUE

625 ?

  Figure 3-4.    An lvalue-rvalue diagram       

 Notice that we have the rvalue marked with a question mark in Figure  3-4 . The reason is because the 
rvalue is unknown at this moment in time.  The rvalue of a data item is what is stored at a data item’s lvalue.  
Because C is not required to initialize a non- static  data item’s rvalue to zero or any other particular value 
when it is defined, you should  always assume  that the rvalue of a data item contains whatever random bit 
pattern may exist at its lvalue until a value has explicitly been assigned into the data item. Because of this 
fact, we show the rvalue for  val  as a question mark: it contains whatever junk happens to be at its lvalue. 
(rvalue is also a hangover from assembly language programming days and stood for “register value”. Again, 
some students think of it as “right value” since it forms the “right leg” in Figure  3-4 .) 

 Also keep in mind that the lvalue is always the starting memory address for a data item. That is,  val  is 
stored at its lvalue, which is memory address 625. However, because  val  is an  int  data type, it actually uses 2 
bytes of storage and occupies memory addresses 625 and 626.  

     Understanding an Assignment Statement 
 Suppose you want to assign the value 10 into  val  after it has been defined. The following is the statement to 
do that: 

  val = 10;  

 



CHAPTER 3 ■ ARDUINO C DATA TYPES

62

 Again, this is a simple statement involving a single expression and the binary assignment operator. 
However, stop and think about what the compiler has to do to process the statement. First, the compiler 
must check the statement for syntax errors. No problem there. Next, the compiler must go to its symbol table 
to see if a variable named  val  exists. Again, everything looks fine because  val  is in the symbol table. Next, it 
makes sure  val  has a valid lvalue (memory address), which it does (i.e., memory address 625). If the lvalue 
column was empty (all rows in the lvalue column in the symbol table are initialized to null when the table is 
created because null is never a valid memory address), the compiler would know this is a data declaration, 
and the variable is not yet defined. It should be clear that a variable that is not defined cannot have a value 
assigned into it. However, since  val  has a valid lvalue (or memory address), the compiler can process the 
assignment statement. 

 To process the assignment statement, the compiler goes to the data item’s lvalue in memory and 
copies the value on the right-hand side of the assignment statement (i.e., 10) into the 2 bytes of memory 
at the lvalue memory location. It knows it must use 2 bytes of memory because of the  int  designation 
in the second column of the symbol table (see Table  3-6 ). This means that the rvalue of  val  is changed 
from a random bit pattern in memory to 10. This is shown in Figure  3-5 . If you could look at memory 
locations 625 and 626, you would see 00001010 00000000. (Most PCs store the low byte first and the high 
byte second at the memory locations. The end result is the same: the value 10 is stored at the lvalue 625. 
Sometimes at cocktail parties you’ll hear people discussing the “Endian” problem. Simply stated, it refers 
to whether the low or high byte comes first in memory. For details, see  http:\\en.wikipedia.org/wiki/
Endianness .)  

VAL

R VALUEL VALUE

625 10

  Figure 3-5.    The lvalue-rvalue diagram after processing the assignment statement       

 Note that any time your program needs to use the data stored in  val , it uses  val ’s lvalue to go to that 
memory address and fetch “ int  bytes” of data (each  int  is 2 bytes) from that memory location. (I’ve taken 
some liberties here, because the actual processing takes place on your  m c board, not the PC, and the storage 
locations are known by the time you are ready to run the program. Still, the simplification presented here 
should help you understand how variables and memory relate in a program.)  

     The Bucket Analogy 
 Understanding lvalues and rvalues is so important to a true understanding of C that I developed the Bucket 
Analogy to make it easy to remember the details about lvalues and rvalues. Suppose you have various 
buckets lying around. Each bucket is just big enough to hold a specific number of bytes of data. Some 
buckets can only hold 1 byte of data, whereas others can hold 2 bytes. Still others can hold 4 bytes, and so 
on. Using Table  3-1 , you can see that a 1-byte bucket could hold a  byte ,  char ,  unsigned char , or  boolean  data 
item. A 2-byte bucket could be used to hold an  int ,  unsigned int , or a  word . A 4-byte bucket could be used for 
a  long ,  unsigned long ,  float , or  double . Let’s further assume you have a whole room filled with these various 
sized buckets. 

 



CHAPTER 3 ■ ARDUINO C DATA TYPES

63

 Now consider the following two program statements: 

  int val;  
  val = 10;  

 These are the same statements we discussed earlier. The first statement fills in the symbol table 
information, as we discussed earlier, and is shown in the last line of Table  3-6 . In the first statement, the word 
 int  tells us the type of data and  val  tells us its name. You will also hear the word  int  as it’s used here referred 
to as a  type specifier . Likewise, you may hear the term  identifier  used instead of term  variable name . Potato, 
paataahto.… 

 In the Bucket Analogy, the type specifier in the first statement can be thought of as determining the size 
of the bucket needed to hold the relevant data. From Table  3-1 , you know that an  int  requires a 2-byte bucket 
to hold its data. The lvalue for  val  tells you where that bucket is located in memory. As we saw earlier, the 
second program statement 

  val = 10;  

 means that we go to  val ’s bucket located at memory address 625 and pour 2 bytes of data into the bucket 
with the data arranged in such a pattern as to form the value 10. This can be seen in Figure  3-6 . The Bucket 
Analogy tells you that the bucket’s size is determined by the variable’s type specifier (e.g.,  int ), the location of 
the bucket is its lvalue (e.g., 625), and if you peek inside the bucket, you see its rvalue (e.g., 10).  

 Figure  3-6  also shows a 1-byte bucket stored at memory location 700 with the character 'A' stored in it. 
The bucket stored at memory address 700 is only half as big as the bucket used to store  val . The bucket is 
smaller because it only takes 1 byte to store a  char  data type. 

625

10

A

700

Low Memory

High Memory

  Figure 3-6.    The Bucket Analogy for val       

 



CHAPTER 3 ■ ARDUINO C DATA TYPES

64

 The Bucket Analogy provides the following three conclusions:

•    The size of a bucket depends upon the type specifier for the data type being stored  

•   Where the bucket is stored in memory is the data item’s lvalue  

•   The contents of the bucket is the data item’s rvalue    

 Any time you use a variable in a program, you are probably locating a specific bucket using its lvalue 
and using the contents of that bucket (i.e., its rvalue) in some expression. 

 Now consider the three statements in the following code fragment: 

  int val = 10;  
  int sum;  

  sum = val;  

 It should be clear that the last statement must use lvalues and rvalues to resolve the assignment 
expression used in the statement. Let’s walk through the process. 

 In the previous program statement, the compiler goes to the symbol table and finds the lvalue for  val . 
The compiler uses the memory address ( val ’s lvalue) to fetch  val’ s 2-byte bucket. Peeking into the bucket, we 
can see the rvalue of 10. 

 Next, the compiler the looks up  sum ’s lvalue, goes to that memory address, and fetches its bucket. 
Now that both buckets (i.e., operands) are available, the assignment operator causes the compiler to pour 
the 2 bytes of  val ’s bucket into  sum ’s bucket. The assignment process, therefore, replaces whatever may have 
been in  sum ’s bucket with the contents of  val ’s bucket. 

 There’s an important lesson here: all simple assignment statements copy the contents of the bucket on the 
right side of the assignment operator into the bucket of the operand on the left side of the assignment operator. 
It should also be obvious that  all simple assignment statements copy the right operand’s rvalue into the left 
operand’s rvalue . By thinking in terms of rvalues and lvalues, you will develop a more robust understanding of C.   

     Using the cast Operator 
 Consider the following statements: 

  int val = 65;  
  char  letter;  

  letter = val;  

 The first two statements define buckets for  val  and  letter , and place them in memory at (we assume) 
locations 625 and 700, respectively. Figure  3-6  shows where the buckets are, but  val  now has the number 65 
stored in it. Therefore,  val ’s lvalue is 625 with an rvalue of 65 and  letter  has an lvalue of 700 with an rvalue of 
the random bit pattern that existed when it was defined. Now consider the last expression: 

  letter = val;  

 Simply stated, this statement grabs the  val  bucket and tries to pour 2 bytes of data into  letter ’s 1-byte 
bucket! Not good. Doing this runs the risk of spilling 1 byte of information, because  letter ’s bucket is too 
small to hold all of  val ’s data. One byte of potentially valuable information is going to dribble onto the floor. 
Even worse, the Arduino C compiler does not even complain about the data dribble! It merrily makes the 
assignment and moves on. As a result,  letter  could contain some bogus value that could cause you problems 



CHAPTER 3 ■ ARDUINO C DATA TYPES

65

in your program later on. Clearly, this was just a bad design by the programmer, who should have known 
better than to try and shove a 2-byte  int  into a 1-byte  char . 

 Why didn’t the compiler complain about the type specifier mismatch? The reason is because the C++ 
compiler is configured to not issue certain error messages and warnings. The error and warning messages 
are suppressed because new programmers are often intimidated by too many error messages. If you wish 
to see these messages, you can alter your IDE preferences (File ➤ Preferences) and set the “Show verbose 
output during:” option by checking the “compilation” check box. 

 As it turns out, and as you saw in Table  3-1 , a  char  is capable of holding the value 65 without overflow. 
Therefore, our assignment of the  int  into the  char  doesn’t cause a problem … in this case. 

 However, suppose  val  was initialized to 300 instead of 65. Now the value cannot be stored in a  char  
because the value is too large for a single byte. The compiler still won’t complain, even though the value 
cannot be represented with a  char . Even so, 1 byte of data is going to be slopped on the floor during the 
assignment. 

     The Cast Rule 
 The  Cast Rule  is simple: whenever an assignment expression has a larger data type being assigned into a 
smaller data type, use the cast operator. 

 So, what is the cast operator? Consider the following example: 

  int val;  
  long bigVal =25000;  

  val = bigVal;  

 Once again, the statement has a larger data type (a 4-byte  long ) being assigned into a smaller data type 
(a 2-byte  int ). This assignment runs the risk of losing 2 bytes of information. However, in this case, the value 
25000 can safely be stored in both a  long  and an  int , so no data loss occurs. However, you should still apply 
the Cast Rule, as follows: 

  val  = (int) bigVal;  

 The preceding cast operator is ( int ). In other words, the cast operator is nothing more than two 
parentheses surrounding the destination data type. Because you want to cast a  long  to an  int , you 
surround the destination data type ( int ) with a set of parentheses. In other words, to use a cast, surround 
the destination data type with parentheses, and then place the cast in front of the variable that is the 
source data type (e.g., the  long ). The data type of the cast operator (i.e.,  int ) must match the data type 
that is to receive the results of the cast ( val  is an  int ). That is, if you are assigning a value into an  int , the 
cast must also be an  int . Again, the cast operator must be placed immediately in front of the data item 
whose rvalue is to be cast into the new data type. In this example, the  (int)  cast must appear immediately 
before  bigVal . The cast has the effect of acting like a funnel that compresses the data so that it fits into the 
smaller data type. 

   Silent Casts 
 Suppose later in the program code we see something like this: 

  bigVal = val;  

 Does this need a cast? Technically, no, it does not. The reason a cast is not needed in this example is 
because you’re trying to pour the contents of a 2-byte bucket into a 4-byte bucket. Because the destination 



CHAPTER 3 ■ ARDUINO C DATA TYPES

66

bucket is bigger than the source bucket, there’s no risk of spilling data on the floor. I have not found any 
compiler that complains about this type of mismatched data assignment, even though the code is implicitly 
casting (i.e., changing) an  int  to a  long . In other words, the compiler is casting the data without telling you 
about it. This is called a  silent cast  because there is no indication that the cast is taking place. 

 I hate silent casts. 
 The reason I hate silent casts is because they almost always come back at some point in the program 

to bite you in the butt. As a result, you should  always use a cast when you use an assignment statement 
between two different data types . Even though it is not strictly necessary, you should rewrite the preceding 
statement as: 

  bigVal = (long) val;  

 If nothing else, the cast documents that you really did want to force the data of an  int  into a  long . 
 The Arduino compiler doesn’t complain about either noisy or silent casts, which, to me at least, is a 

bug for the “noisy” cast. To be on the safe side, always use the cast operator when performing an assignment 
expression involving two different data types. It will save you time in the long run and your instructor will be 
impressed that you truly understand what’s going on with such expressions. 

 There are other expressions where a cast should be used, but I discuss those in later chapters after you 
have a little more experience under your belt.    

     Summary 
 You’ve covered a lot of important concepts in this chapter and I implore you not to read further until you 
completely understand the concepts presented in this chapter. One of the major tripping points for C 
students is the concept of pointers. (Pointers are an advanced topic and are not covered until Chapter   8    .) 
However, if you  really  do understand lvalues, rvalues, and the Bucket Analogy, you will sail through the 
concept of pointers without so much as a hiccup. The benefits associated with really understanding the 
concepts in this chapter are not limited to just pointers. Many other programming concepts are also based 
on a good understanding of the concepts presented in this chapter. Invest the time to truly learn these 
concepts now. It will pay huge benefits later on. 

  EXERCISES 

     1.     Which of the following variable names are valid and which ones would draw a 
syntax error?     

            bigFeet         your Feet       switch          12Meters  
            _SystemVal      -Negative       NoGood          realGood  

 Answer:  your Feet  is not valid because it has a space character in its name.  switch  
is invalid because it is a C keyword.  12Meters  is invalid because it starts with a digit 
character.  -Negative  is invalid because it starts with a math operator. All the rest are 
acceptable.

    2.    How do you pronounce the word “ char ” as in     

            char c;  

 Answer: This is probably not the most important question to ask, but one I still do get 
asked. Some pronounce it like “char” as in “charcoal” or to “char” a steak. Others 

http://dx.doi.org/10.1007/978-1-4842-0940-0_8


CHAPTER 3 ■ ARDUINO C DATA TYPES

67

pronounce it as “care” as is “caretaker.” There is no right or wrong answer. It just depends 
upon whether you identify with something that is burnt and ugly or someone who lovingly 
takes care of puppies. I’ll let you guess which one I prefer.

    3.    Suppose you have a  char  variable. Write the binary values for 32, 72, 111, 128.     

 Answers: 
            32 =  00100000  
            72 =  01001000  
            111 = 01101111  
            128 = ?  

 You can't represent 128 with a signed  char  because the max value is 127. If you set the 
high bit, the interpretation is the value –1, not 128.

    4.     Suppose you’re at a cocktail party and someone asks you what “precision” 
means in Arduino C. What's your answer?     

 Answer:  Precision  refers to the number of significant digits a floating number has. In 
Arduino C, the numeric range for floating point numbers is fairly large … up to 38 digits. 
However, only the first 6 (sometimes 7, but don’t count on it) digits are significant. All the 
remaining digits are the computer’s best guess as to their value.

    5.    What's the difference between the  string  and  String  data types?     

 Answer: The  string  data type is made up of nothing more than an array of  char  data. 
The  String  data type subsumes the  string  data type, but adds a number of methods that 
can be used with the  String  data type (e.g., see Table  3-3 ). It’s not too much of a stretch 
to think of the  String  data type as a shell—or wrapper—that encompasses  string  but 
also has other methods defined within it. ( String  uses OOP methods.) The good news 
is the added functionality that  String  brings to the party. The bad news is that the extra 
functionality means more memory resources are chewed up, even if you don’t use that 
extra functionality. Because resources are so scarce with  m cs, we avoid using the  String  
data type.

    6.    What’s an lvalue? What’s an rvalue?     

 Answer: An lvalue is a location in memory where a data item resides. An rvalue is the value of 
that data item.

    7.    Relate lvalues and rvalues to the Bucket Analogy.     

 Answer: Think of the bucket as something that can hold data. The size of the bucket 
depends upon the number of bytes of data the bucket needs to hold (e.g., 1 byte for a 
 char , 2 bytes for an  int , 4 bytes for a  float , etc.). It is the data item’s type specifier that 
determines the size of the bucket. When you define a variable, as in 

               int k = 25;  

 the type specifier,  int,  determines you need a 2-byte bucket; the lvalue is where you place the 
bucket in computer memory; and the rvalue tells you the value that you see when you peek 
into the bucket (i.e., 25).



CHAPTER 3 ■ ARDUINO C DATA TYPES

68

    8.    What’s wrong with the following statements and how do you fix them?     

            int val;  
            double x = 1000.0;  
            val = x;  

 Answer: The last statement is an assignment statement, so you are taking the rvalue of  x  
and copying it into the rvalue of  val . Using the Bucket Analogy, you are pouring the contents 
of a 4-byte bucket into a 2-byte bucket, so the potential exists for losing data. You fix this 
by using a cast operator, as in 

            val = (int) x;  

 The cast has the effect of skimming off 2 bytes of “unused” water and just assigning the 
meaningful data (i.e., 1000) into  val . Alas, it’s up to you to know the max value the  int  can 
hold before the “skimming” process starts throwing the kids out with the bath water. 

 Keep in mind that the Arduino compiler does allow silent casts, and these are almost never 
a good idea. As a rule, always use a cast when you use the assignment operator with 
differing data types.      



69© Jack Purdum 2015 
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming 
for the Arduino, DOI 10.1007/978-1-4842-0940-0_4

    CHAPTER 4   

 Decision Making in C           

 The real power of a  m c is its ability to read data, make a decision based on that data, and then take the 
appropriate action(s). Stated differently, a  m c has the ability to make decisions based upon the information 
provided to it from the “outside” world via various input devices. In this chapter, you will learn the various 
expressions that enable your program to make decisions based upon the state of some set of data. 

     Relational Operators 
 As you might guess, a decision is often based upon comparing the values of two or more pieces of data. You 
make such decisions all the time, probably without thinking much about the process that is involved in 
making the decision. The phone rings and you get up to answer it. Implicitly, you made a decision whether 
to answer the call or not. Further, that decision involved comparing the expected benefits from answering 
the call (e.g., it might be someone you want to talk with) versus the expected costs of not answering the call 
(i.e., I may miss out on talking to someone important). Some decisions are better than others. Indeed, the 
definition of a dilemma is when you have two or more choices and they are all bad. 

 Table  4-1  presents the relational operators available to you in Arduino C. The relational operators form 
the basis of all decision making in C. All the operators in the table are  binary operators , which means each 
relational operator requires two operands.  

   Table 4-1.    Relational Operators   

 Operator  Interpretation 

  >   Greater than 

  >=   Greater than or equal to 

  <   Less than 

  <=   Less than or equal to 

  ==   Equal to 

  !=   Not equal to 

 The result of all relational operations is either logic  true  (non-zero) or logic  false  (zero). For example: 

  5 > 4    // Logic true; 5 is greater than 4  
  5 < 4    // logic false; 5 is not less than 4  
  5 == 4   // logic false; 5 is not equal to 4  
  5 != 4   // logic true; 5 is not equal to 4  



CHAPTER 4 ■ DECISION MAKING IN C

70

 Clearly, you can also use variables in the expressions. If  a  = 5 and  b  = 4, then: 

  a > b    // Logic true  
  a <  b   // logic false  
  a == b   // logic false  
  a !=  b  // logic true  

 These expressions are exactly the same as the previous set, only we substituted variable names for the 
numeric constants. Now let’s see how to use the relational operators with some C statements. 

 In a computer program, unless the central processing unit (CPU) is told to do otherwise, the CPU 
processes the source code program instructions in a linear, top-to-bottom manner. That is, program 
execution starts at whatever is designated as the starting point for the program and plows through the source 
code from that point to the next statement until all of the statements have been processed.  

     The if Statement  
 In an Arduino C program, the program starting point is the function named  setup() . The program processes 
all of the statements in the  setup()  function block, starting with the first statement and marches through the 
statements from statement 1 to statement 2 to statement 3 … until it reaches the closing parentheses of the 
 setup()  function block. You can, however, alter this linear processing flow by using an  if  statement. 

 The syntax for an  if  statement is as follows: 

  if   (expression1)  
  {       // Start of   if   statement block  
          // execute this   if   statement block only if expression1 is true  
  }                       // End of   if   statement block  

  // statements following the if statement block  

 An  if  statement block consists of the  if  keyword followed by a set of opening and closing parentheses. 
Within those parentheses is an expression that evaluates to either logic  true  or logic  false . After the closing 
parenthesis of the  if  test expression is an opening brace character ( { ). The opening brace marks the start 
of the  if  statement block. The opening brace is followed by one or more program statements, called the  if 
statement block , that are to be executed if the  if  test is logic  true . Almost every programmer on the planet 
indents the statements within the  if  statement block one tab stop. The  if  block statements are then followed 
by a closing brace ( } ), which marks the end of the  if  statement block. 

 ■   Note    You can change the indent size using the IDE Edit menu and clicking the Increase Indent or Decrease 
Indent option. If the indent space is too large, some of the source code disappears off the right edge of the 
screen. To see the end of a long source code line means you may have to use the horizontal scroll bar. If the 
indent is too small, it’s harder to see the statement block controlled by the  if  statement. You can experiment 
and find out what works for you. Personally, I prefer an indent of two spaces. It’s enough of an indent to see the 
statement blocks, but it’s small enough to minimize the number of statements that need the horizontal scroll 
bar. If you can’t decide, you can let the IDE decide for you. The menu sequence Tools ➤ Auto Format (or Ctrl+T) 
will automatically format your code using the default formatting. If you modify the indent amount, the auto 
format uses your settings for formatting the source code.  



CHAPTER 4 ■ DECISION MAKING IN C

71

     What if Expression1 Is Logic True? 
 Consider the following code fragment: 

  int b = 10;  

  // some more program statements…  

  if (b < 20) {  
     b = doSomethingNeat();     // Do this is b is less than 20  
  }  
  doSomethingElse(b);  

 The code fragment begins by defining an integer variable named  b  and initializing it to 10. Then some 
unspecified statements are executed followed by an  if  test. If  b  has remained unchanged by the unknown 
statements, its value is still 10. Because  b  is less than 20, the expression is logic  true , the  if  statement block is 
executed, and function d oSomethingNeat()  is called. Evidently, the  doSomethingNeat()  function has an  int  
function type specifier. This means that just before you leave the function, the  doSomethingNeat()  function 
code places an  int  value in your backpack and, when program control returns back to the  if  statement block, 
the code opens your backpack, takes out the  int,  and assigns it into  b  . Then the statement following the  if  
statement block is executed, which means  doSomethingElse(b)  is called.  

     What if Expression1 Is Logic False? 
 If the  if  test on expression1 is false, the  if  statement block is skipped and the call to d oSomethingNeat()  is 
 not  made. Therefore, after a false expression1 test, the next statement to be executed by the program is 
 doSomethingElse(b).  You can see the path of program execution more clearly in Figure  4-1 . A logic  true  result 
of the relational test causes program flow to execute the statement(s) inside the  if  statement block. If the 
relational test result is logic  false , the  if  statement block is skipped and the program resumes execution at 
the first statement following the closing brace of the  if  statement block. As you can see, a decision has been 
made in the program based upon the program’s data.  

logic false logic true

if (expression 1) {
   // statements
}
//  more statements

  Figure 4-1.    Execution paths for if test       

 One more thing: you  will  make the following mistake somewhere down the road: 

  if (val = 10)  
  {  

     size = 10;  

  }  

 



CHAPTER 4 ■ DECISION MAKING IN C

72

 Note that the relational test ( expression1 ) expects a true or false result. In this case, however, we used 
a single equal sign (i.e., the assignment operator) by mistake for the relational expression rather than the 
proper “is equal to” operator ( == ).  This means the code performs an assignment statement, not a relational 
test.  This is what I call a  Flat Forehead Mistake  (FFM). You know, the kind of mistake where you slam the heel 
of your hand into your forehead while muttering: “How could I make such a stupid mistake!” Relax. All good 
programmers have a slightly-flattened forehead and you should expect your fair share of such hammerings. 
The good news is that, although you might make a FFM mistake a second time, you’ll find the error more 
quickly the second time. Anytime you end up in an  if  statement’s statement block when you know you 
shouldn’t be there, check for this type of error. It’s pretty easy to forget the second equal sign character.  

     Braces or No Braces? 
 When the  if  statement block consists of a single program statement, the braces defining the statement block 
are optional. For example: 

  if (b == 10)  
      b = doSomethingNeat();  
  doSomethingElse();  

 works exactly the same as it did before. If the two versions behave the same, why the extra keystrokes? 
 There are several reasons why you should  always  use braces for  if  statement blocks. First, always using 

braces adds consistency to your coding style, and that’s a good thing. Second, adding the braces delineates 
the  if  statement and makes it stand out more while you’re reading the code. Finally, while you may think 
only one statement is needed right now, subsequent testing and debugging may show you need to add 
another statement to the statement block. If that’s true, you  must  add the braces. If you don’t always add 
braces you get something like the following: 

  if (b == 10)  
      b = doSomethingNeat();  
      doBackupNow();  
  doSomethingElse();  

 The indenting suggests the programmer wanted to call both  doSomethingNeat()  and  doBackupNow()  
only when b equals 10. However, the way the code is written, the call to  doBackupNow()  is always called 
because what the programmer actually has written is: 

  if (b == 10) {  
      b = doSomethingNeat();  
  }  
     doBackupNow();  
  doSomethingElse();  

 Always remember that the  if  statement block without braces default to a single statement being 
controlled by the  if  test. My suggestion: always use braces to delineate the  if  statement block even when it’s 
not required. That way you lessen the chances that it will appear the code has a mind of its own.   

     A Modified Blink Program 
 Let’s write a program that uses the example Blink program from the IDE as its starting point, but makes some 
modifications to it. The original Blink program (File ➤ Examples ➤ Basics ➤ Blink) blinks the Arduino’s 



CHAPTER 4 ■ DECISION MAKING IN C

73

onboard LED. The program we’re developing uses two external LEDs, two resistors, and a few breadboard 
jumper wires. The circuit is designed to light one of the LEDs for one second (just like the original Blink 
program), and then turn it off and then turn the other LED on. The circuit is shown in Figure  4-2 .  

  Figure 4-2.    An alternating LED Blink program       

     The Circuit 
 The circuit involves connecting one wire from digital I/O pin 10 on the Arduino to a 470 ohm resistor. The other 
end of the resistor is connected to the anode (long) leg of the LED. The cathode end of the LED is connected to 
the Arduino ground (GND) pin. Note how we have connected a wire from the Arduino GND pin to the ground 
rail of the prototyping board. The term  rail  refers to any row of pins that are all connected together. In Figure  4-2 , 
all of the connection points of the right-most pin column of the breadboard are connected together. Because we 
have connected this common column of connection points to ground, we call it the “ground rail”. If you wanted 
to, you could connect a wire from the +5V pin on the Arduino board to the second right hand pin column and 
create a +5V rail. (The breadboard shown in Figure  4-2  is symmetrical in that you could have used the leftmost 
two columns for the same purpose.) Many breadboards mark these rails with a minus sign for the ground rail 
and a plus sign for the positive voltage rail. Some manufacturers may also use the color red to mark the positive 
voltage rail and black from the ground rail. The ground rail serves as a common ground for both LEDs. 

 As a general rule, most circuits that use jumper wires like you see in Figure  4-2  use black wires to denote 
a GND connection and red wires for positive voltage connections. Obviously this is not a rule etched in 
stone, but one that can help when debugging a circuit.  

 



CHAPTER 4 ■ DECISION MAKING IN C

74

     Circuit Resistor Values 
 So, what should the value be for each of the resistors? It really depends upon the specific LEDs you are using. 
The maximum load on an Arduino I/O pin should never exceed 40mA (milliamperes), but I prefer to think of 
20mA as the maximum current. The max current rating on my LEDs is 50mA, so they fall well within the I/O 
pin rating.  Ohms Law  states that  volts  =  amps  ×  ohms . You can rearrange the terms and state 

  Resistance = Volts / Amps  

 because the Arduino board operates with 5 volts and the maximum amperage is 20 milliamps (or .020 amps), 
the resistance value turns out to be 250 ohms. (These calculations do not take into account the forward 
voltage of the LED, which results in less current. This errs on the safe side for the LED.) However, that 
resistance is running the Arduino I/O pin at my maximum current rating, which may not be such a great idea. 
As a result, I increased my resistor values to 470 ohms. You can always start with a higher resistance value and 
see what works. Decreasing the resistance value will increase the brightness of the LED. Drop the resistance 
too far and the LED will do its imitation of a Supernova, thus creating a small void in the universe … not good. 
Increase the resistance too much and it will be extremely dim. Obviously, it makes more sense to err on the 
high side. For most LEDs, resistor values between 150 and 1000 ohms will work just fine. The schematic for 
the circuit is shown in Figure  4-3 .  

  Figure 4-3.    Schematic for alternate Blink program       

 



CHAPTER 4 ■ DECISION MAKING IN C

75

 The polarity of the LED does matter as you can see in the circuit diagram in Figure  4-3 . While there are 
exceptions, the negative ( cathode ) terminal for most LEDs is shorter than the  anode  and usually has a flat 
edge on the plastic lens just above the cathode. The good news is that, even if you do get the leads reversed, 
the worst thing that (usually) happens is that the LED does not light. The circuit can be seen in Figure  4-4 .   

  Figure 4-4.    The modified Blink program       

     The Modified Blink Program  
 Now let’s look at the program code. Listing  4-1  presents the source code for our modified Blink program. The 
first two lines define  int  variables named  LED1  and  LED2 . However, notice the  const  keyword that appears 
immediately before the  int  keyword. 

 



CHAPTER 4 ■ DECISION MAKING IN C

76

   const Keyword 
 The  const  keyword is what is called a  data type modifier . In this particular case, the  const  keyword is used to 
modify the  int  type  specifier . The use of the  const  data type modifier means that any variable defined with 
the  const  data type modifier cannot change that variable’s initialized value during the course of program 
execution. In our program, this means that  LED1  and  LED2  have the values 10 and 11, respectively, the 
entire time the program runs and those values are etched in stone. If you tried to assign a new value to a 
 const  variable after its definition, like this: 

  LED1 = 8;  

 the compiler would issue an error message like this: 

  error: assignment of read-only variable 'LED1'  

 This says that  LED1  is a read-only variable (i.e., a constant) and cannot be changed. 
 Why use a  const  variable? Perhaps the most important reason is because we have wired the circuitry to 

use those particular LEDs using those specific pins. If we change those pin assignments, the program isn’t 
going to work correctly. The  const  specifier means you cannot inadvertently change those pin assignments 
in the program as it executes. 

 Another reason for using  const  data definitions is because they can lend clarity to your code. For 
example, we could have written the statement to turn on an LED with the statement: 

  digitalWrite(10, 1);  

 But, which statement would you prefer to read when you’re trying to figure out what the code does: the 
preceding statement or the following statement: 

  digitalWrite(LED1, HIGH);  

 Anything you can do to make your code easier to read is a good thing. Using the keyword  const  (when 
appropriate) is one of those good things because you have given the LED pin a name and it cannot be 
changed as the program runs. (We don’t like magic numbers, right?) 

 We can make some  const  generalizations:

•    Use  const  anytime you define a data item that you do not want to change during 
program execution.  

•   The keyword  const  appears immediately before the data type specifier (i.e.,  const  is 
used before the  int  keyword).  

•   The variable being defined must include the value of the constant at the point of its 
definition (i.e., the data definition must have an assignment operator ( '=' ) as part of 
the data definition).  

•   By convention, variables defined with the  const  data type modifier are often written 
with all uppercase letters.    

 While the last generalization is not etched in stone, using all caps for the variable name makes it easy to 
remember that it is a defined program constant. 



CHAPTER 4 ■ DECISION MAKING IN C

77

     Listing 4-1. Modified Blink Code 

  /*  
    Alternate Blink  
    Turns on one LED on for one second while the other is off, then  
    reverses the LEDs for 1 second, repeatedly.  
    Dr. Purdum, 11/13/2014  
    */  
  // Given each LED pin a name and don't let it be changed by the program:  
  const int LED1 = 10;  
  const int LED2 = 11;  

  // the setup routine runs once when you press reset:  
  void setup() {  
    // initialize the digital pins as an output.  
    pinMode(LED1, OUTPUT);  
    pinMode(LED2, OUTPUT);  
  }  

  // the loop routine runs over and over again forever:  
  void loop() {  
    digitalWrite(LED1, HIGH);   // turn LED on (HIGH is the voltage level = 5V = ON)  
    digitalWrite(LED2, LOW);    // turn LED off by making the voltage LOW (= 0V = OFF)  
    delay(1000);                // wait for a second  
    digitalWrite(LED1, LOW);    // turn the LED off by making the voltage LOW  
    digitalWrite(LED2, HIGH);   // turn LED on (HIGH is the voltage level)  
    delay(1000);                // wait for a second  
  }   

 After the LED data definitions, the code calls the  setup()  function which is responsible for actually 
starting the program to run. That is,  setup()  performs the Initialization Step in our program. All the  setup()  
function does is initialize the two input/output (or I/O, since they can be used for either) pins to serve as 
output pins via the calls to  pinMode() . By using  pinMode()  to set the pins in their OUTPUT state, when one 
of these pins is called using the  digitalWrite()  function, the pin’s state is set to +5 volts when the pin mode is 
HIGH. If the pin’s mode is LOW, the voltage is driven to 0 volts on the pin, thus turning it off. 

 Note how the two statements set the environment for the way the Arduino pins behave in the program … 
exactly what we would expect an Initialization Step to do. Also note that  pinMode()  needs to know which pin 
to use and what to change it to (INPUT or OUTPUT). So, out comes your backpack and you stuff it with the 
appropriate pin number and pin state before each call to  pinMode() . Once the two pin modes are set in the 
 setup()  function, the program automatically proceeds to the  loop()  code. 

 The  loop()  function statement block begins with a call to  digitalWrite()  for  LED1 , setting that pin to the 
HIGH (i.e., voltage on) value. (More work for your backpack.) Next, another call to  digitalWrite()  is made, 
but this time for  LED2  with the mode set to LOW. The  digitalWrite()  call to  LED1  has the effect of turning 
 LED1  on. The second call statement to  digitalWrite()  has the effect of turning  LED2  off. Note that all these 
calls make your backpack pretty busy. 

 After the two  digitalWrite()  calls, the  delay(1000)  call is made which causes the program to pause for 1 
second. (The  delay()  function expects your backpack to be stuffed with a value measured in milliseconds; 
1000 milliseconds is 1 second.) After the one second delay, the same sequence of  digitalWrite()  calls are 
made, only the pin state in these calls is reversed, after which the program is again paused for one second. 
If you study this code, you should be able to convince yourself that this sequencing causes the two LEDs to 
blink back and forth once every second. This process continues forever, or until the power is removed or a 
component in the system fails. 



CHAPTER 4 ■ DECISION MAKING IN C

78

 I encourage you to put this circuit together and run the program. If you have one of the Arduino Starter 
Kits mentioned in Chapter   1    , it will take you just a couple of minutes to build the circuit. Getting down and 
dirty with the hardware and fiddling around with the software is the  only  way to really learn this stuff.    

     Software Modifications to the Alternate Blink Program  
 Now let’s modify the program to use  if  statement blocks. The only statement block that is affected is the 
 loop()  function block. The modified code is presented in Listing  4-2 . 

    Listing 4-2. The Modified Blink Program Using if Statements 

  /*  
    Alternate Blink  
    Turns on one LED on for one second while the other is off, then reverses the  
    LEDs for 1 second, repeatedly.  

    Dr. Purdum, Dec. 15, 2014  
    */  

    // Give each LED a name:  
  const int LED1 = 10;  
  const int LED2 = 11;  
  long counter = 0;  

  // the setup routine runs once when you press reset or apply power:  
  void setup() {  
    pinMode(LED1, OUTPUT);  
    pinMode(LED2, OUTPUT);  
  }  

  // the loop routine runs over and over again forever:  
  void loop() {  
    if (counter % 2 == 1) {  
      digitalWrite(LED1, LOW);     // turn LED off by making the voltage LOW  
      digitalWrite(LED2, HIGH);    // turn LED on (HIGH is the voltage level)  
      delay(1000);                 // wait for a second  
    }  
    if (counter % 2 == 0) {  
      digitalWrite(LED1, HIGH);    // turn LED on (HIGH is the voltage level)  
      digitalWrite(LED2, LOW);     // turn LED off by making the voltage LOW  
      delay(1000);                 // wait for a second  
    }  
    counter = counter + 1;  
  }   

 where the new variable,  counter , is a  long  data type that is initialized to 0 and defined just after the data 
definitions for LED1 and LED2 near the top of the source code file. (You can load the Blink source code using 
the File ➤ Examples ➤ Basics ➤ Blink from the IDE. You can then examine the complete source code file.) 
Let’s look at the code. 

 The conditional expression of the  if  statement compares 0 to the following subexpression: 

  counter % 2  

http://dx.doi.org/10.1007/978-1-4842-0940-0_1


CHAPTER 4 ■ DECISION MAKING IN C

79

 The subexpression takes the current value of counter and, using the modulo operator ( % ), performs 
a modulus 2 operation on it. The percent sign ( % ) is called the  modulo  (or  modulus )  operator and yields 
the remainder after division .  Because a modulo operation returns the remainder after division, any 
number modulo 2 is the same as asking whether the number is odd or even. Consider the following: 

  1 % 2 = 1    // goes 0 times, with a remainder of 1 (it's odd)  
  2 % 2 = 0    // goes 1 time, with a remainder of 0 (it's even)  
  3 % 2 = 1    // goes 1 time, with a remainder of 1 (it's odd)  
  4 % 2 = 0    // goes 2 times, with a remainder of 0 (it's even)  
  5 % 2 = 1    // goes 2 times, with a remainder of 1 (it's odd)  

 and so on. Because counter is incremented by 1 ( counter  =  counter  + 1) each time we pass through the loop, 
the modulo test has the effect of toggling the LEDs on and off because the value of  counter % 2  alternates 
between 1 and 0. If you look at the first if statement block, the  if  expression using the modulo operator 
is going to alternate between 1 and 0. Since any non-zero value is treated as a logic  true  result, the first  if  
statement block is executed on each alternate pass through  loop() . If the first  if  statement expression is logic 
 true , the second if statement test must be logic  false . Could it also be true that each time counter is an odd 
number, the first  if  statement block is executed and the second  if  statement block is skipped? Think about it. 
With a little thought, you should be able to convince yourself that the new program in Listing  4-2  performs 
pretty much exactly as it did in Listing  4-1 . 

 Alas, the modified code is a good example of  RDC  …  Really Dumb Code . Let’s see why.  

     The if-else Statement Block 
 Think about the code in the previous section. If the first if test is logic  true , the second if test must be logic 
 false . Likewise, if the first if test is logic  false , the second if test must be logic  true . Yet, in either case, we 
evaluate an unnecessary if test on each pass through the loop. Clearly, if one if test is  true , the other must be 
 false . That is, we always perform two  if  tests on each pass through the loop when we should be able to only 
do one test. Do not proceed further until you understand what I’ve said here … it’s important. 

 C provides another form of the simple  if  statement called the  if-else  statement. The syntax for the  if-else  
statement is: 

  if (expression evaluates to logic true) {  
          // perform this statement block if logic true  
  } else {  
          // perform this statement block otherwise  
  }  

 As you can see, the first statement block following the  if  test is executed if, and only if, the relational test 
is logic  true . Otherwise, the else statement block is executed. 

 The  if-else  allows us to simplify our loop code somewhat by getting rid of an unnecessary  if  test, as can 
be seen in the following code fragment: 

  void loop() {  
  if (counter % 2 == 1) {    // Is it an odd number?  
        digitalWrite(LED1, LOW);  // Yep...turn LED1 off (LOW)  
        digitalWrite(LED2, HIGH); // turn the LED2 on (HIGH)  
  } else {                   // If it's not odd, it must be even...  
        digitalWrite(LED1, HIGH); // turn LED1 on (HIGH)  
        digitalWrite(LED2, LOW);  // turn LED2 off (LOW)  
  }  



CHAPTER 4 ■ DECISION MAKING IN C

80

  delay(1000);                // wait for a second  
  counter = counter + 1;  
  }  

 Note how we were also able to get rid of one  delay()  call by using the  if-else  statement and use only one 
 if  test expression. The preceding code fragment is an example of SDC … Sorta Dumb Code. The reason that 
this code is SDC is because we can simplify it a little bit more by defining two new variables names,  led1  
and  led2 . These two new  int  variables are not constants as before (hence lowercase letters) but are just plain 
variables. Further, because the C language is case sensitive, there is no conflict between the names  LED1 , 
 LED2  and  led1 ,  led2 . Because  led1  and  led2  can have differing values, we can simplify the code a little, as 
shown here: 

  void loop() {  
  if (counter % 2 == 1) {  
     led1 = 11;               // LED on pin 11 will be lit  
     led2 = 10;               // LED on pin 10 will go out  
  } else {  
     led1 = 10;               // LED on pin 10 will be lit  
     led2 = 11;               // LED on pin 11 will go out  
  }  
  digitalWrite(led1, HIGH);   // turn LED on (HIGH)  
  digitalWrite(led2, LOW);    // turn LED off (LOW)  
  delay(1000);     // wait for a second  
  counter = counter + 1;  
  }  

 In this case, we simply reverse the LED I/O pins based upon the  if  test and then make the call to 
 digitalWrite() . The program, of course, still behaves as before. A partial advantage is that you only have to 
pack your backpack twice now, since we have removed one pair of calls to  digitalWrite() . Try the code out 
and verify that I’m not pulling your leg. 

 There are several lessons to be learned here. First, a simple  if  test is good enough to make the program 
work, but an  if-else  actually often is more efficient because you can reduce the number of  if  test expressions. 
Second, the  if-else  statements can be reworked to make it easier to read and understand the code. This 
second lesson leads to a third lesson: There’s more than one way to skin a cat. Just because you have a 
program working doesn’t mean it’s the most efficient way to write the code. When you’re dealing with 
relatively small amounts of memory, even small adjustments to the code may mean the difference between 
having the program run or running out of memory. 

 If this code was turned in for a programming assignment, I would give the person a C. That is, it’s 
average code that works and that is what I would expect from everyone in the class. You’ll see how to elevate 
that grade later in the chapter.  

     Cascading if statements 
 Often a program requires specific actions to be taken when a specific value for a variable is read. For 
example, you might have a variable name  myDay  that can assume the values 1 (Sunday) through 7 
(Saturday). The code might look like this: 

  int myDay;  

                            // Some code that determines what day it is...  



CHAPTER 4 ■ DECISION MAKING IN C

81

  if (myDay == 1) {  
          doSundayStuff();  
  }  

  if (myDay == 2) {  
          doMondayStuff();  
  }  

  if (myDay ==3) {  
          doTuesdayStuff();  
  }  

  if (myDay == 4) {  
          doWednesdayStuff();  
  }  

  if (myDay == 5) {  
          doThursdayStuff();  
  }  

  if (myDay == 6) {  
          doFridayStuff();  
  }  

  if (myDay == 7) {  
          doSaturdayStuff();  
  }  

 Any time you see a repeating sequence like this, you need to scratch your head and ask: Is this good code? 
Short answer: No. In fact, this is yet another example of RDC. The reason is because the way it is presently 
written, the program often executes a lot of unnecessary code. For example, suppose  myDay  equals 1 (Sunday), 
which means the first  if  test is true and we call  doSundayStuff() . The problem is that the program then proceeds 
to perform six more unnecessary  if  tests even though we know it’s Sunday and none of the other six tests can be 
true. (On one consulting job, I saw this same type of code, but with 31  if  tests because it was for the day of the 
month rather than the day of the week. One of the rare examples of IDC: Incredibly Dumb Code.) 

 So, how do you fix this RDC? C allows you to nest  if  statements within an  if  statement. For example: 

  if (myDay == 1) {  
          doSundayStuff();  
  } else {  
          if (myDay == 2) {  
                  doMondayStuff();  
          } else {  
                  if (myDay == 3) {  
                          doTuesdayStuff();  
                  } else {  
                          // you get the idea...  
                  }  
          }  
  }  



CHAPTER 4 ■ DECISION MAKING IN C

82

 If you follow the logic, when  myDay  equals 1,  doSundayStuff()  is called and all of the rest of the  if  tests 
are skipped because the first  else  statement block is never executed if the first relational test is true. If the 
first  else  statement block is skipped, all of the subsequent  if  and  else  statement blocks are also skipped. This 
is called a  cascading if  statement block. The style convention with cascading  if  statements is to indent each 
 if  test to make it easier to read and reinforce that you are looking at a cascading  if  statement. Try different 
values for  myDay  until you are convinced that the unnecessary  if  blocks are, in fact, skipped. 

 Personally, I’m not a big fan of cascading  if  statements and avoid them when it makes sense to do so. The 
main reason is because a long cascade can get to the point where you have to horizontally scroll the source 
code window to see the code. Also, if the day happens to be Saturday (i.e., the last day in the cascading  if  block 
to be tested), you still end up performing 7  if  tests on  myDay , which seems wasteful. Finally, I just find it hard 
to read cascading  if  blocks. It would be a lot more efficient if we could just perform the test once and then jump 
to the appropriate statement. Fortunately, that’s exactly how the  switch  statement works. However, before I 
discuss the  switch  statement, let’s consider an easier way to increment or decrement a variable.  

     The Increment and Decrement Operators 
 In our discussion of the  loop()  function, the last line in the code fragment was this: 

  counter = counter + 1;  

 This statement simply takes the rvalue of counter, increments it by 1, and assigns the new value back 
into the rvalue of counter. In other words, the statement is an increment operation on counter. This is such a 
common operation in programming that C includes a special operator called the increment operator that is 
designed specifically to increment a variable. 

     Two Types of Increment Operators (++) 
 There are two flavors for the increment operator: pre-increment and post-increment. The pre-increment 
operator is written: 

  ++counter;       // pre-increment  

 Note that the increment operator (++) appears  before  the variable name. The interpretation is that the 
rvalue of the variable ( counter ) is fetched, its value incremented and then used in whatever expression in 
which it happens to appear. 

 The post-increment operator is written: 

  counter++;       // post-increment  

 Notice that the  ++  symbol appears  after  the variable name with the post-increment operator. In this 
case, the rvalue of the variable ( counter ) is fetched and used in the expression, and then incremented. 

 You’re probably saying, “So what?” Consider the following code fragment: 

  int c = 5;  
  int k;  

  k = ++c;        // pre-increment  

 What’s the value of  k ? Is  k  equal to 5 or 6? Because this is a pre-increment operator, the rvalue of  c  (5) is 
fetched, its rvalue is incremented to 6, and then the value is assigned into the rvalue of  k . So  k  is now equal to 6. 



CHAPTER 4 ■ DECISION MAKING IN C

83

 Now consider if the last statement instead was written: 

  k = c++;        // post-increment  

 In this instance, the rvalue of  c  (5) is fetched, that rvalue is then assigned into k, and then variable  c  is 
incremented. In this case,  k  equals 5, not 6 as before, but  c  is still equal to 6. 

 The increment rules are simple: a  pre-increment operator increments the rvalue before it is used  in an 
expression while a  post-increment operator uses the rvalue in the expression and then increments the rvalue . 
Keep this distinction buried in your mind because, if you don’t, a bug is going to bite you in the butt down 
the road and the forest-for-the-trees problem makes it hard to see this kind of bug. 

   Two Flavors of the Decrement Operator(--) 
 As you might guess, the decrement operator ( -- ) is similar to the increment operator, but is used to decrease 
the rvalue of a variable by 1. That is, 

  counter = counter – 1;  

 could be written as 

  counter--;  

  because the decrement operator appears after the variable name, is it a post-decrement operation . Because there is 
no other expression to evaluate (such as an assignment operator), you could also write the statement as: 

  --counter;  

 This is a  pre-decrement  operator. Again, you can use pre- or post-decrement operators in this statement 
because no other subexpression needs to be processed. Either way,  counter ’s rvalue is decremented before 
the next program statement is executed. 

 Suppose that  c  is 6 when the following expression is executed. What’s the value of  k  when the statement 
is finished executing? 

  k = --c;  

 The statement causes the rvalue of c to be fetched, its rvalue is immediately decremented to 5, and that 
value is  then  assigned into  k , leaving both variables  c  and  k  with the value of 5. 

 Now consider a similar statement, but using the post-decrement operator. If  c  is 6 

  k = c--;  

 the he statement causes the rvalue of  c  to be fetched and its rvalue (6) assigned into  k , and then its rvalue is 
decremented. As a result,  k  equals 6 but  c  equals 5. 

 Because the increment and decrement operators are  unary operators  (i.e., they only require one 
operand), when used by themselves in a statement, as in 

  c++;  
  ++k;  

 you are free to use either the pre- or post-increment or decrement operator. However, when the pre- or post- 
operators are used as part of a larger expression, you need to pay attention to how the operators are used.  



CHAPTER 4 ■ DECISION MAKING IN C

84

   Precedence of Operators 
 Because we have added several new operators, let’s update our precedence table. In fact, we’re going to add 
all of the C operators even though you haven’t studied all of them. The complete list of precedence operators 
is shown in Table  4-2 .  

   Table 4-2.    Precedence of Operators Table   

 Level  Operators 

 1   ()   []   →   .  (dot) 

 2   !   ~   ++   --   +  (unary)   - (unary)   *  (indirection)   &  (address of)  (cast)   sizeof  

 3   *  (multiplication)   /   %  

 4   +  (binary)   -  (binary) 

 5   <<   >>  

 6   <   <=   >   >=  

 7   ==   !=  

 8   &  (bitwise AND) 

 9   ̂   

 10   |  

 11   &&  

 12   ||  

 13   ?:  

 14   =   +=   -=   *=   /=   %=   &=   ^=   |=   <<=   >>=  

 15   ,  (comma) 

 While the precedence table looks like a lot to memorize … it is! For that reason, I suggest that you write 
this page number on the inside of the back cover page of this book because you will be referring to this 
page often as you start writing your own programs. With a little practice, you’ll find yourself using the table 
less and less. However, I’ve been writing C code for over 35 years and I still need to refer to the precedence 
table. For now, just write this page number inside the back cover page for easy reference. (I will discuss the 
operators as we encounter them throughout the text.)    

     The switch statement 
 The  switch  statement is another control keyword and has the following syntax: 

  switch (expression1) {  // opening brace for switch statement block  
          case 1:  
                  // statements to execute when expression1 is 1  
                  break;  



CHAPTER 4 ■ DECISION MAKING IN C

85

          case 2:  
                  // statements to execute when expression1 is 2  
                  break;  
          case 3:  
                  // statements to execute when expression1 is 3  
                  break;  

          // more case statements as needed  

          default:  
                  // execute if expression1 doesn't have a "case value"  
                  break;  
  }       // closing brace for switch statement block  
  // All break statements send program control here  

 Using the  myDay  example from the nested  if  discussion, each  case  statement block would correspond to 
a day of the week. The last  case  statement block would then be for  case 7 . If  expression1  somehow had a value 
other than 1 through 7, the  default  statement block is executed, perhaps issuing some kind of error message 
or condition (e.g., a red LED turns on). In other words,  if a value for expression1 does not match any case value, 
the default statement block is executed . Notice that any  break  statement sends program control to the same 
place: the first statement following the closing brace of the  switch . You can think of the  default  statement 
block as a catchall for any value that doesn't have a corresponding  case  value for its statement block. 

  switch (myDay) {  // Start of switch statement block  
    case 1:  
      doSundayStuff();  
      break;  
    case 2:  
      doMondayStuff();  
      break;  
    case 3:  
      doTuesdayStuff();  
      break;  
    case 4:  
      doWednesdayStuff();  
      break;  
    case 5:  
      doThursdayStuff();  
      break;  
    case 6:  
      doFridaytuff();  
      break;  
    case 7:  
      doSaturdayStuff();  
      break;  
    default:  
      Serial.println("Somethings went terribly wrong...shouldn't be here");  
      break;  
  }     // End of switch statement block  
  // This is where control goes after any break statement  



CHAPTER 4 ■ DECISION MAKING IN C

86

 The  expression1  that controls the  switch  must evaluate to an integral data type. That is,  expression1  
could be a  byte ,  char ,  int , or  long  (including their unsigned counterparts), it cannot be a floating point type 
(float or double) nor can it be a reference data type (e.g., array, string, or String). Although Arduino C also 
accepts a  boolean  data type for expression1, that seems suspect to me and I wouldn’t suggest using it. After 
all, a  boolean  is either true or false so an  if-else  statement block would work. 

 Note that braces are not used to delineate a  case  statement block. Within the  switch  statement,  case  
statement blocks begin with the colon character ( : ) and extend through the  break  statement. The  break  
statement is required at the end of each  case  statement block. 

 So, where does program control go once it processes a  break  statement? A  break  statement causes 
program control to jump to the first statement  following  the closing brace of the  switch  statement. In the 
preceding syntax guide, control is sent to whatever statement happens to be where the last comment is. This 
is the next statement after the  switch  appears in the source code. 

 If you forget the  break  statement for a given  case , program execution “falls through” to the next  case  
statement. This can be a potential source of errors in your programs. However, there are also times when two 
 case  values may need to execute the same program statements. In those situations, the “ case  fall through” 
can actually simplify the code. 

 For example, consider Listing  4-3 . In this program we use the  Serial  object to ask the user to enter a 
letter between A and F, perhaps representing a course grade. The  available()  method of the  Serial  object    is 
only greater than 0 when the user has typed in a letter on the  Serial  monitor. (Make sure you set the  Serial  
monitor to use “No line ending” in the text box at the bottom of the monitor and the baud rate is 9600.) 
When the user does enter a letter, we convert it to upper case by the call to  toupper() , after throwing the 
letter c in our backpack, and then reassign it back into c for the  switch  statement block. Note how letters ‘B’ 
or 'C' generate the same message. This illustrates a  case  “fall through.” 

     Listing 4-3. A switch Example 

  void setup() {  
    // put your setup code here, to run once:  
    Serial.begin(9600);  
    Serial.println("Enter a letter A - F:");  
  }  

  void loop() {  
    char c;  

    while (true) {  
      if (Serial.available() > 0) {  
        c = Serial.read();  
        c = toupper(c);      // Make it upper case  
        switch (c) {  
          case 'A':  
            Serial.println("Great job");  
            break;  
          case 'B':          // Note fall-through here...  
          case 'C':  
            Serial.println("You passed");  
            break;  
          case 'D':  
            Serial.println("You're on the edge");  
            break;  
          case 'F':  
            Serial.println("See you again next semester.");  



CHAPTER 4 ■ DECISION MAKING IN C

87

            break;  
          default:  
            Serial.println("You can't even follow instructions?");  
            break;  
        }  
      }  
    }  
  }   

 If you look at case 'B', you can see that we omitted the  break  statement, which means program control 
“falls through”  case  'B' into  case  'C'. In this example, that’s what we wished to do. However, most of the time 
you will have a matching  case-break  for each state you need to control. The  default  statement is a catchall for 
bad input. 

     A switch Variation, the Ellipsis Operator ( … ) 
 There will be times when you need a more broad type of  switch  fall-through. For example, it’s pretty 
common to assign grades such that 0 to 59 is an F, 60 to 69 is a D, 70 to 79 is a C, and so on. In this situation, 
we want a fall-through that is broader than a single letter. In this situation, we can use the ellipsis operator. 
The ellipsis operator allows us to state a range of values for the variable that is  expression1 . The following 
code fragment shows how this works: 

  char letterGrade;  
  int grade;  
  // some code that gives grade a value between 0 and 100  
  switch (grade) {  
     case 0...59:  
         letterGrade = 'F';  
         break;  
     case 60...69:  
         letterGrade = 'D';  
         break;  
     case 70...79:  
         letterGrade = 'C';  
         break;  
     case 80...89:  
         letterGrade = 'B';  
         break;  
     case 90...100:  
         letterGrade = 'A';  
         break;  
     default:  
        Serial.println("Should never see this.");  
    break;  
  }  

 In the code fragment, note how the  ellipsis operator  (which is simply three periods placed in a row) 
allows us to construct ranges of values for  grade  and react accordingly. It is important to note that you  must  
have a space before the first period and after the last period of the ellipsis operator. Otherwise you will get an 
error message, probably saying something about a bogus floating point value. Obviously, you could write the 
code as a cascading  if  statement, but I think the  switch  with the ellipsis is a little easier to read. 



CHAPTER 4 ■ DECISION MAKING IN C

88

 Note that this use of the ellipsis operator is an extension that is built into the GCC compiler … it is  not  
part of the C standard. However, you can use it in your Arduino programs. 

 Just make sure your code does what you design.  

     Which to Use: Cascading if-else or switch? 
 I prefer the  switch  statement for several reasons. First, even following normal coding style conventions, it’s 
pretty rare that you have to scroll the source code window horizontally like you may have to do with a long 
cascading  if-else  block. Second, the  switch-case  statements actually result in a jump table, which means there 
are no false  if  tests being evaluated like there can be with a cascading  if  statement block. (A jump table in this 
context is little more than a list of memory addresses where code execution should continue.) Finally, and 
this is subjective, I find it much easier to read a  switch  statement block than a cascading  if  block. While there 
may be situations where a cascading  if  has to be used, the  switch  is almost always a better choice.   

     The goto Statement  
 The  goto  statement can also be used to direct program control to some point in the program other than the 
next statement. However, teaching you how to use the  goto  statement is the same as teaching you how to 
grow warts on your kids. Using a  goto  in your code is ugly and reflects bad coding style. If you really want to 
learn about the  goto  statement, someone else will have to teach you.  

     Getting Rid of Magic Numbers 
 Now let’s see how you can raise your grade for the modified Blink program. If you look back to Listing  4-1 , 
you find the statements: 

  const int LED1 = 10;  
  const int LED2 = 11;  

 If you were a beginning  m c programmer, would the numbers 10 and 11 make any sense to you? I don’t 
think so. As a result, I call these “magic numbers” because they are constants in the program that have no 
apparent meaning in and of themselves. 

 What if I added a few lines and changed the code to: 

  #define IOPIN10  10  
  #define IOPIN11  11  

  const int LED1 = IOPIN10;  
  const int LED2 = IOPIN11;  

 Now the data definitions for  LED1  and  LED2  as least give me some idea of what the numeric values 10 
and 11 mean in the program, plus I think it makes the purpose of  LED1  and  LED2  a little clearer.  

     The C Preprocessor 
 When the compiler takes over and starts compiling your program code, you can think of it actually making two 
passes through the source code. On the first pass, the compiler looks for directives that it must process before it 
can actually start compiling your program code. These directives are called  preprocessor directives  because they 



CHAPTER 4 ■ DECISION MAKING IN C

89

    Table 4-3.    Arduino C Preprocessor Directives   

 Directive  Action 

  #define NAME value   Ascribes the identifier  NAME  to the constant  value . 

  #undef NAME   Removes  NAME  from the list of defined constants 

  #line lineNumberValue 
“filename.ino”  

 Allows the compiler to refer to any line numbers in the file named  filename.
ino  to be referenced as line  lineNumberValue  from this point on by the 
compiler. Normally used in debugging. This is not in the Arduino C reference 
material, but the compiler recognizes it. 

  #if definedConstant 
expression operand  

 Conditional compilation. Example: 

  #if LED == 12  
                      #define VOLTS 5  
  #endif  

 This is not in the Arduino C reference material, but the compiler recognizes it. 

  #if defined NAME  
       // statement(s)  
  #endif  

 Allows for conditional compilation of statements if NAME is defined. The 
statement block ends with  #endif . This is not in the Arduino C reference 
material, but the compiler recognizes it and most libraries use it. 

  #if !defined NAME  
       // statement(s)  
  #endif  

 Same as  #if  defined, but processes a statement block only if  NAME  is not 
defined. This is not in the Arduino C reference material, but the compiler 
recognizes it. 

  #ifdef   Same as  #if  defined. This is not in the Arduino C reference material, but the 
compiler recognizes it. 

  #ifndef   Same as  #if !defined . This is not in the Arduino C reference material, but the 
compiler recognizes it. 

  #else   Can be used with  #if  like as  if-else  statement, but to control compiled 
statements. Example: 

  #if defined ATMEGA2560  
                      #define BUFFER 64  
  #else  
                      #define BUFFER 32  
  #endif  

 This is not in the Arduino C reference material, but the compiler recognizes it. 

  #elif   Used with  #if  for cascading  #if s. 

  #include “filename.xxx”   Opens the file named  filename.xxx  and reads the contents of the file into the 
program source code. Usually, if double quotes surround the file name, the 
search for the file is in the currently active directory. If angle brackets are used 
( <filename.xxx> ), the search begins in some implementation-defined manner. 
This is not in the Arduino C reference material, but the compiler recognizes it. 

must be “preprocessed” before the compiler can do its thing. Table  4-3  presents the some of the commonly 
used preprocessor directives for Arduino C. (Chapter   11     contains more detail on the preprocessor.)  

 Note that  preprocessor directives are really not statements since they are not terminated with a semicolon . 
Because of this, they must be written as shown in the examples that follow. 

http://dx.doi.org/10.1007/978-1-4842-0940-0_11


CHAPTER 4 ■ DECISION MAKING IN C

90

 The Arduino Language Reference (using Help ➤ Reference from within the IDE or    http://arduino.
cc/it/Reference/HomePage      online) states that only  #define  and  #include  are supported. However, using 
those preprocessor directives presented in Table  4-3  did not draw compilation errors with the Arduino 1.6.0 
compiler. Since the Arduino IDE compiler is derived from the Open Source C++ compiler (GCC), you can 
expect the directives to be supported. 

 The important thing to notice here is that the  #define  preprocessor directive gives you a way to define 
a constant in a more meaningful way than does  const . (Also, because a  #define  does not actually define a 
variable with a lvalue, it uses less SRAM memory.) 

 So what? Well, let’s see another benefit that  #define  brings to the party. Suppose you have the following 
statements in a program you wrote: 

  int minCarFine = 125;  
  int minTruckFine = 125;  
  int minMotorcycleFine = 125;  

 Now suppose your state legislature passes a law such that the minimum truck fine is now $150. There 
is a terrific temptation to do a global search for 125 and replace with 150. This is a train wreck waiting to 
happen. For example, if your code has a constant 8125, it automatically would be changed to 8150 with a 
global search and replace; probably not what you intended to do. 

 Suppose instead you wrote: 

  #define MINCARFINE 125  
  #define MINTRUCKFINE 125  
  #define MINCYCLEFINE 125  

  int minCarFine = MINCARFINE;  
  int minTruckFine = MINTRUCKFINE;  
  int minMotorcycleFine = MINCYCLEFINE;  

 The first good thing is the magic numbers are gone from the statements in the source code because 
you have given them a name. Second, the source code is actually easier to read than before. Third, if the 
politicians do change the fines, you can go to one spot in the program, make the following change: 

  #define MINTRUCKFINE 150  

 and recompile the program and all the instances where the truck fine is used are correctly changed to the 
new value. No error-prone search and replace. The compiler does all the work for you. Good stuff. 

 One more thing about preprocessor directives that you need to keep in mind. That is, any  #define  is a 
 textual substitution in the source code  … nothing else. As such, all  #defines  are a typeless data declaration: 
they do not have an lvalue in the symbol table nor is their data type checked. Indeed, once the preprocessor 
pass in finished, none of the  #define ’s exist anymore. They have all been substituted with their appropriate 
text. Therefore, suppose you do something silly like: 

  #define VALUE  3.333  
  // some code  
  int myValue = VALUE;    //Oops! Integers can't have a decimal point  

 The last statement is trying to place a floating point number into an  int . Clearly, this is probably not 
what the programmer intended, but the Arduino C compiler doesn’t complain. The compiler simply 
truncates VALUE to 3 for  myValue . The compiler can do this because it has no idea of the data type 
associated with VALUE … VALUE is typeless.  

http://arduino.cc/it/Reference/HomePage
http://arduino.cc/it/Reference/HomePage


CHAPTER 4 ■ DECISION MAKING IN C

91

     Heads or Tails 
 Let’s write a program that uses our current two LED breadboard circuit to simulate tossing a coin. To do this, 
let’s begin the exercise by using the Five Program Steps for our design. 

     Initialization Step 
 Recall that the Initialization Step is used to establish the environment in which we want the program to run. 
Because we wish to use our two LEDs from the previous program, we need to initialize the I/O pins that 
control the LEDs. We also know that we need to generate a series of random numbers for use in the program. 
Where are those random numbers going to come from? 

 Any time you need a value or an object for use in a program, the first thing you should do is see if 
someone else has already created code for that object. The first place to check is the Arduino Language 
Reference. Sure enough, it appears that there is a random number generator available. Upon inspection, we 
see a function named  randomSeed()  as well as  random() . Further reading tells us that  random()  produces a 
series of pseudo random numbers. 

 Pseudo random numbers? 
 What this means is that, while the values of the series of numbers is randomly distributed, you will get 

the identical sequence of values each time you use  random() . While this can be great while debugging a 
program, it’s clearly not what we want when we are finished testing the program. Reading the  randomSeed()  
documentation we find out that we can “seed” the random number generator with a unique value at the 
outset and  random()  then generates a unique set of random numbers for that seed value. Therefore, it seems 
appropriate that we use  randomSeed()  in the Initialization Step. 

 We also need some working variables to store various values in the program.  

     Input Step 
 In this step we need to gather all of the data necessary to solve the task at hand. The only data that the 
program uses is the random number produced by the random number generator.  

     Process Step 
 Our program needs to inspect the random number value and determine if it is a heads or a tails. The random 
number generator produces numeric values, not heads or tails. Also, the type of data that is returned from 
the random number generator is a  long . Because there is no “heads” or “tails” data type, we need to invent 
our own. Since a coin toss has a binary result (i.e., there are only two states possible: heads or tails), we can 
view the random number as an odd or even result. You already know that a number modulo 2 yields either 
1 or 0 as the result, depending on whether the number is odd or even. Perfect! We’ll treat odd numbers as a 
head and even numbers as a tail.  

     Output Step 
 As it turns out, the Output (or Display) Step is the most complicated step. The process is not difficult, just 
busy. Our goal is to light one LED when the number is odd (i.e., a head) and the other LED when the number 
is even (i.e., a tail.) It would seem, therefore, that we should turn both LEDs off for a second or so and then 
turn the appropriate LED on for a few seconds based on the random number that was generated. Then we 
should repeat the process over and over.  



CHAPTER 4 ■ DECISION MAKING IN C

92

     Termination Step 
 Because we aren’t doing anything fancy and the program is designed to run forever (or until the power is 
removed or something fails), there is no Termination Step. 

 Now, load the IDE and write your version of the code  before  you look at the code presented in 
Listing  4-4 . You will learn twice as much doing it yourself than you will looking at my code. Plus, you may 
have a better way to write the code. Give it a try. 

   Listing 4-4. The HeadsOrTails Program Code 

  /*  
    Heads or Tails  
    Turns on an LED which represents head or tails. The LED  
    remains on for about 3 seconds and the cycle repeats.  

     Dr. Purdum, Nov 12, 2014  
   */  

  #define HEADIOPIN     11        // Which I/O pins are we using?  
  #define TAILIOPIN     10  

  #define PAUSE         50        // How long to delay?  

  int headsCounter;               // Heads/tails counters  
  int tailsCounter;  

  long loopCounter;  
  long randomNumber = 0L;         // 'L' tells compiler it's a long data type,  
                                  // not an int.  

  // the setup routine runs once when you press reset:  
  void setup() {  
    Serial.begin(115200);  
    headsCounter = 0;  
    tailsCounter = 0;  
    loopCounter = 0;  

    pinMode(HEADIOPIN, OUTPUT);  
    pinMode(TAILIOPIN, OUTPUT);  
    randomSeed(analogRead(A0));             // This seeds the random number generator  
  }  

  void loop() {  

    randomNumber = generateRandomNumber();  
    digitalWrite(HEADIOPIN, LOW);           // Turn both LED's off  
    digitalWrite(TAILIOPIN, LOW);  

    delay(PAUSE);                           // Let them see both are off for a time slice  

    if (randomNumber % 2 == 1) {            // Treat odd numbers as a head  
      digitalWrite(HEADIOPIN, HIGH);  
      headsCounter++;  



CHAPTER 4 ■ DECISION MAKING IN C

93

    } else {  
      digitalWrite(TAILIOPIN, HIGH);       // Even numbers are a tail  
      tailsCounter++;  
    }  
    loopCounter++;  
    if (loopCounter % 100 == 0) {          // See how things are every 100 flips  
      Serial.print("After ");  
      Serial.print(loopCounter);  
      Serial.print(" coin flips, heads = ");  
      Serial.print(headsCounter);  
      Serial.print(" and tails = ");  
      Serial.println(tailsCounter);  
    }  
    delay(PAUSE);                          // Pause for 3 seconds  
  }  

  long generateRandomNumber()  
  {  
    return random(0, 1000000);             // Random numbers between 0 and one million  
  }   

 We begin the program with a series of  #defines  and data definitions: 

  #define HEADIOPIN  11  
  #define TAILIOPIN  10  
  #define PAUSE      50  

  int headsCounter;                        // Heads/tails counters  
  int tailsCounter;  

  long loopCounter;  
  long randomNumber = 0L;                  // 'L' tells compiler it's a long data type,  
                                           // not an int.  

 Note that the  #define ’s remove many of the magic numbers in the program and make the code more 
readable. If we want to change the pause between coin tosses, all we need do is change its  #define  and 
recompile the program. (Of course, you have to upload the compiled code to the  m c again, too.) 

 Next, we run the  setup()  code. Most of the Initialization Step code has been discussed before. However, 
the statement 

  randomSeed(analogRead(A0)); // This seeds the random number generator  

 is new. The function call to  RandomSeed()  seeds the random number generator using the value returned by 
a call to  analogRead(A0)  as the seed value. You can read the complete documentation for the  analogRead()  
function online at the reference URL mentioned earlier or directly from the IDE (Help → Reference). 
However, basically, the function reads the voltage on pin 0 and maps it to a value between 0 and 1023. 
Whatever that value is (and it changes constantly due to electrical noise on the unconnected pin), it is used 
to seed the random number generator. Having done that, we’re ready for the Input and Process Steps as 
presented in the  loop()  function. 



CHAPTER 4 ■ DECISION MAKING IN C

94

 ■   Note    Unconnected pins are not always a good thing. Recently I was working on an RF circuit involving a 
rotary encoder. I neglected to connect the encoder switch pin properly to the circuit and left it in a “floating” 
(unconnected) condition. As my hand got closer to the encoder to turn it, the value on the floating pin spit out a 
series of apparently random values that I was monitoring on the Serial monitor. Tying the pin to +5 volts through 
a pull-up resistor solved the problem; a classic RDC move on my part. Moral: If a pin seems to have a mind of 
its own and you don’t want random values appearing on it, check to make sure you didn’t leave it floating in the 
circuit.  

 In the  loop()  function,  generateRandomNumber()  is called which returns a number between 0 and 
1000000. (I go into detail about writing your own functions in Chapter   6    . For now, just trust me on this one.) 
Upon returning for the function call, our backpack is opened and a  long  value is taken out and assigned into 
 randomNumber . Next, the two calls to  digitalWrite()  turn off both LEDs and call  delay()  so that we can observe 
that they are turned off. (It’s okay to use  delay()  because we aren’t doing any interrupts or time-sensitive 
processes.) We then use the modulo operator as before to determine if the random number is heads or tails. 

 The  if  statement again uses the modulo operator to determine if we have tested any multiple of 100 coin 
flips yet. If the  loopCounter  equals an even multiple of 100, the remainder is 0 and the  if  statement block is 
executed. The block simply displays the two counters for heads and tails for the total number of coin flips. 
Notice the  Serial  method used in the last  println()  statement has an “ ln ” at the end of it. This causes the next 
displayed line to appear on a new line. 

 You might also like to know that after 50,000 flips, my program produced 25,050 heads and 24,950 tails. 
In theory, it should be 25,000 for each, but these numbers suggest that Arduino C has a pretty good random 
number generator.   

     Summary 
 In this chapter, you learned various ways to make a decision in your program code. Each method has its 
own advantages and disadvantages. With experience, you’ll get a feel for which decision test is the best one 
for the task at hand. You also learned a number of style conventions (e.g., using braces even when a single 
 if  statement may not require it). Style considerations may seem silly to you at the moment, but if you work 
in a commercial environment (or plan to do so), coding style becomes very important when a different set 
of eyes has to view your code. Pick a style and use it consistently. It will make your code easier to read and 
debug. Finally, I showed you how you can use some of the preprocessor directives to 1) make your code 
easier to read and debug by removing magic numbers from your code, and 2) make changing constants at 
some point in the future less error-prone. 

 EXERCISES

     1.    What’s wrong with the following code? 

                if (random())  
                {  
                        x = 50;  
                 }  

 Answer: the  random()  function returns a random number as a  long  data type. The  if  
statement expects the value between the parentheses (expression1) to be a Boolean 

http://dx.doi.org/10.1007/978-1-4842-0940-0_6


CHAPTER 4 ■ DECISION MAKING IN C

95

value, true or false, but the value is a  long . This is a  semantic error . That is, the code is 
syntactically correct, but the expression is used in the wrong context. The compiler should 
at least give a warning here, but it does not. Moral: Just because the compiler lets you get 
away with something doesn’t always mean it’s right.  

    2.    Are there any errors in the following code? 

               if (j = k)  
               {  
                     doStuff();  
               } else {  
                     doOtherStuff();  
               }  

 Answer: Rather than using the test for equality in the  if  test expression, a single equal sign 
is used instead. This will not draw an error message from the compiler because, again, 
the syntax is correct. However, the programmer likely wanted to perform a relational test 
between variables  j  and  k (i.e., ==) , not an assignment.  

    3.    What happens when you run an LED without a resistor in the circuit? 

 Answer: You may get lucky and nothing happens. However, if you are using an LED with 
a max current rating of less than 20mA, you could burn out the LED. If the current rating 
for the LED is much above 40mA, you could burn out the  m c board. Either way, the odds of 
something good happening are stacked against you. Moral of the story: Use an LED with a 
resistor having a value of 150–1000 ohms. Side observation: blue or white smoke coming 
from a component cannot be put back into that component.  

    4.     Modify the HeadsOrTails program so that it reports back to your PC how many 
heads and tails were sensed during a given number of “coin tosses”. 

 Answer: You can use the code in Listing  4-3  as the base code, but modify the last  if  
statement block that uses the modulo operator to: 

                if ( (headCount + tailCount)  ==  desiredNumberOfFlips) {It is 
assumed that you have a long variable named desiredNumberOfFlips 
and that it has been set in setup() to the appropriate value.   

    5.    Why is a  switch  statement block better than a cascading  if  block? 

 Answer: First, long cascading  if  blocks may force you to use horizontal scrolling to view all 
of the code. Second, if you have, say, 10  if  statements in the block and the 10 th   if  statement 
is currently the one that needs to be executed, you will have to evaluate 9 false expressions 
before you get to the one needed. Third, a  switch  builds a jump table so one evaluation 
at the top of the  switch  causes the code to jump to the proper  case , thus avoiding 
unnecessary tests. Finally, most programmers find it easier to read a  switch  block than a 
cascading  if  block.  

    6.     Design a circuit that accepts digit characters from the  Serial  keyboard and interprets 
the number so that 1 is Sunday, 2 is Monday, and so on. Based on the number 
entered, you light a LED associated with that day of the week. You should use digital 



CHAPTER 4 ■ DECISION MAKING IN C

96

pins 4–10 for the LEDS. Keep in mind that people do make mistakes when entering 
data. Listing  4-3  shows you how to read the  Serial  monitor for keystrokes. 

 Answer: There are so many ways to code this that there is no single answer. However, it is 
really little more than wiring up additional LEDs like you see in Figure  4-3 . I would suggest 
you use a  switch  block to control the LEDs.  

    7.     If you press the number 5 on your keyboard in the  Serial  monitor and click the 
Send button, what does the following code do? 

               char c;  
               int num;  

               if (Serial.available() > 0) {  
                 c = Serial.read();               // This fetches the '5'  
                 // some code to make sure it was a digit character...  
                 num = (int) (c -'0');  
               }  

 Answer: I’m not going to tell you. Type the code in, get it working, and then explain to 
your best friend what it does in a way that they can understand. If you can teach it, you 
understand it. Hint: There’s a difference between digit characters typed on a keyboard and 
numeric values. For additional help, look up “ASCII Table”.          



97© Jack Purdum 2015 
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming 
for the Arduino, DOI 10.1007/978-1-4842-0940-0_5

    CHAPTER 5   

 Program Loops in C           

 One of the things computers can do more efficiently than humans is repetitive tasks. People get bored, 
and when that happens, their attention drifts and errors creep into the task at hand. Computers have the 
attention span of a gnat (i.e., none), so they are great at performing repetitive tasks. Unless a  m c loses power 
or a component fails, they will loop forever, unless instructed to do otherwise. 

 In this chapter, you will learn

•    What makes a “good” program loop  

•   How to use a  for  loop  

•   How to use the  while  statement  

•   How to use a  do-while  statement and its differences  

•   Infinite loops  

•   The  break  and  continue  keywords    

 You have already used program loops in every program that we’ve discussed via the  loop()  function that 
is present in every Arduino program. In this chapter, however, we will flesh out the details of program loops. 

     The Characteristics of Well-Behaved Loops 
 Most program loops are written to terminate at some point. However, other loops, like the  loop()  function, 
are written to run forever. Indeed, to stop most  m c programs requires removing power from the board, 
uploading a new program, or pressing the reset button on the board to stop the current program from 
running. 

 In the sections that follow, we will forget about the  loop()  function that is automatically included with 
each new program and its infinite execution sequence. Instead, we want to look at loops that you control with 
your own code. With that in mind, let’s examine the three conditions that constitute a well-behaved loop. 

     Condition 1: Initialization of Loop Control Variable 
 As used here, a  loop  is simply the execution of one or more program statements, and upon reaching the last 
statement of the sequence, the program goes back to the first statement and repeats the execution sequence. 
 A well-behaved loop always initializes one or more variables to a known program state before the loop 
statements begin execution.  Usually, the value of one variable is used to control the number of iterations that 
are made through the statement loop. The initialization condition often involves setting the control variable 
to 0. This places the loop control variable in a known state. That is, the rvalue of the loop control variable is a 
known value. 



CHAPTER 5 ■ PROGRAM LOOPS IN C

98

 Some programmers “know” that a specific compiler initializes the rvalue of the variable to zero (or  null , 
if it is a reference type variable). However, there is nothing in the ANSI C standard that requires the compiler 
to initialize all variables to 0 or  null . Indeed, even  null  can be redefined by the compiler vendor to whatever 
makes sense for their particular processor. As a result, the best assumption you can make about the rvalue of 
a freshly defined variable is that it contains whatever random bit pattern (i.e., junk) happened to exist at that 
particular variable’s lvalue. Assuming a variable is initialized automatically to some known state is just not a 
good programming habit.  

     Condition 2: Loop Control Test 
 The second condition of a well-behaved loop is that a test is performed to see if another iteration through 
the loop statements is needed. Usually, this test involves a relational operator and the loop control variable. 
The outcome of the relational test determines if another pass is made through the statements controlled 
by the loop.  

     Condition 3: Changing the Loop Control Variable’s State 
  The third condition of a well-behaved loop is that the variable or expression controlling the loop must change 
state . If the control variable did not change state during the processing of the loop statements, the loop 
executes forever. That is, the outcome of the test in Condition 2 would never change, which means the loop 
would run forever. Loops that run forever are called  infinite loops . Recall that the Arduino  loop()  function is 
designed to do just that—run forever. However, that may not be the desired case for the code you are writing 
inside the  loop()  function. 

 With these three conditions in mind, let’s examine the  for  loop control structure.   

     Using a for Loop 
 The general syntax structure of a  for  loop is as follows: 

  for (expression1; expression2; expression3) {  
          // for loop statement body  
  }  
  // the first statement following the for loop structure  

 The  for  loop consists of the  for  keyword, followed by an opening parenthesis character ('('). After the 
opening parenthesis come three expressions, each of which is separated from the other by a semicolon. 
The third expression is followed by a closing parenthesis character ('(') which is immediately followed by an 
(optional) opening brace. After the opening brace, there is one or more program statements that are to be 
controlled by the  for  loop. These program statements are often referred to as the  body of the for loop . After 
the statements in the body, there is a closing brace, which marks the end of the  for  loop structure. 

 In the loop structure,  expression1  usually initializes the variable that controls the loop. However, since 
 expression1  can have a comma-separated list of subexpressions, we can’t say  expression1  always initializes 
a loop control variable. (You will see an example of this in the next paragraph.)  expression2  performs 
some form of logical test to determine if another pass through the loop body is warranted.  expression3  is 
usually responsible for changing the state of the loop control variable, but is not required to do so. (In fact, 
you could move  expression3  into the loop body if you wanted to, but that’s not the conventional style.). 
Figure  5-1  shows the program flow of the  for  loop.  



CHAPTER 5 ■ PROGRAM LOOPS IN C

99

 To summarize, loop expressions of a well-behaved loop perform the following tasks:

•     expression1 : Usually initializes a loop counter  

•    expression2 : Usually performs a relational test  

•    expression3 : Usually responsible for changing loop the counter (changes state)    

 Although there are exceptions to each of these expression summaries, they are the most common. 
 In Figure  5-1 , the  for  loop begins with the definition of variable  k , followed (perhaps) by some 

additional statements. Then the  for  loop is entered,  expression1 , or  k  = 0, is processed. Because that 
expression is normally followed by a semicolon,  expression1  is a complete statement. 

 Note that  expression1  can have a comma-delimited list of subexpressions. For example, you may see 
something like this: 

  for (k = 0, j = 1; k < 1000; k++) {  

 where  j  is initialized to 1 as part of  expression1 . I’m not a fan of using a comma and a second (or more) 
subexpressions. I think the code is more readable if only the controlling loop variable is initialized in 
 expression1 . You can always initialize  j  just before the  for  loop. 

 You can also move the definition and initialization of variable  k  into  expression1 , as in: 

  for (int k = 0; k < 1000; k++) {  

 Note that, in this example, variable  k  is defined and initialized as part of  expression1 . I’m not a big fan of 
this variant either. Also, if the definition of  k  is part of  expression1 , that variable is removed from the symbol 
table when the closing brace of the  for  loop is reached. If you need to use  k  after the loop finishes, defining 
the variable as part of  expression1  is simply not going to work. 

 Once  expression1  is processed, control passes to  expression2 , or  k  < 1000 in Figure  5-1 . (Note that 
program control does not return to  expression1  again as part of the  for  statement block … it’s done for the 
day.) What happens next depends on the outcome of  expression2 . If  expression2  evaluates to logic  true , 
control is passed to the statements in the loop body, or point 3 in Figure  5-1 . If  expression2  is  true  and after 
the statements in the loop body are processed, control is passed to  expression3  (point 4 in Figure  5-1 ) for 
evaluation. If  expression2  evaluates to logic  false , the  for  loop ends and control passes to the first statement 
following the closing brace of the  for  loop statement block. 

 Usually,  expression3  is used to change the state of the variable that controls the loop iterations, or 
variable  k  in our example. You can also have a comma-delimited list of subexpressions, as in: 

  for (k = 0; k < 1000; k++, j--) {  

int k;

   
for (k = Ø; k < 1000; k++) {
      DoSomethingCool(k);
}

1

3

2 4

true
false

...

  Figure 5-1.    The program flow using a for loop       

 



CHAPTER 5 ■ PROGRAM LOOPS IN C

100

 Once again, I’m not a big fan of complex expressions in the  for  loop expressions. Personally, I’d push the 
decrement of  j  back into the loop body’s statement block. I don’t have a strong theoretical argument for this 
predilection; it’s just the way I do things. 

 After  expression3  is processed, control passes back to  expression2  to test whether another pass through 
the loop should be made. The path now taken again depends upon the outcome of the evaluation of 
 expression2 . If the expression evaluates to logic  true , the loop body statements are executed again. If the 
statement evaluates to logic  false , the  for  loop ends and control is sent to the first statement following the 
closing brace of the  for  statement block.  

     Program to Show Expression Evaluation 
 We can write a short program that shows the order in which the  for  loop expressions are evaluated. The 
displayed results you see on the  Serial  monitor reflect what is shown in Figure  5-1 . The source code appears 
in Listing  5-1 . 

    Listing 5-1. Demonstrate Loop Evaluation 

  void setup() {  
    int k;  

    Serial.begin(9600);  

    for (k = 0, Serial.print("Exp1 k = "), Serial.println(k);  // Expression 1  
         Serial.print("Exp2 k = "), Serial.println(k), k < 10; // Expression 2  
         k++, Serial.print("Exp3 k = "),  Serial.println(k)) { // Expression 3  

      Serial.print("In loop body, k squared = ");   // for Loop statement body  
      Serial.println(k * k);  
      delay(1000);  
    }  
  }  

  void loop() {}   

 I should point out that this is a pretty ugly program and uses programming structures that I would 
normally not use. However, it does show the sequence in which the three expressions are evaluated. 
Figure  5-2  shows a sample run of the program. If you look at the first line in Figure  5-2 , you can see that the 
first expression is  expression1 . If you look at the rest of the table, you can see that  expression1  is never visited 
again. After all, once  k  is initialized to zero, it doesn’t need to be reinitialized.  



CHAPTER 5 ■ PROGRAM LOOPS IN C

101

 The second line shows that  expression2  is visited next. Because  k  is less than 10, that expression 
evaluates to logic  true , and the  for  loop body is executed. The loop body simply uses the  Serial  object to 
display the square of the current value of  k . The output is line 3 in Figure  5-2 . 

 Now note how we immediately branch to  expression3  to change the state of the loop counter 
(i.e.,  k++ ). Once the loop counter is changed (i.e., the loop state changes), the code immediately evaluates 
 expression2  (i.e.,  k  < 10) again to see if another pass through the loop is needed. Because  k  is less than 10, 
another pass through the loop is made. If you follow the output shown in Figure  5-2 , you should be able to 
convince yourself of the expression evaluations up to the point where the loop state dictates that the loop 
should end. 

 Listing  5-2  shows a little more practical use of a  for  loop. 

      Listing 5-2. Table of Squares 

  #define MAXLOOP 10  

  void setup() {  
    int squares[MAXLOOP];  
    int counter;  

    Serial.begin(9600);  
    // Construct the list  
    for (counter = 0; counter < MAXLOOP; counter++) {  
      squares[counter] = counter * counter;  
    }  

  Figure 5-2.    Output from Listing  5-1        

 



CHAPTER 5 ■ PROGRAM LOOPS IN C

102

    // Display the list  
    for (counter = 0; counter < MAXLOOP; counter++) {  
      Serial.println(squares[counter]);  
    }  
  }  

  void loop() {  
  }   

 The code begins with a  #define  that is used to set the array size.  MAXLOOP  is also used to control 
 expression2  in the loop tests. In  setup() , the statement  int squares[MAXLOOP];  defines an array named 
 squares[] , which is used to hold the list of squared values. The  Serial  object is initialized and the first  for  
loop is entered.  expression1  initializes  counter  to 0, since that is the variable that controls the state of the 
loop. Because  counter  is 0 on the first pass through the loop,  expression2  ( counter < MAXLOOP ) is logic  true , 
causing the code in the  for  loop statement block to be executed. 

 There is only one statement in the  for  statement block. The multiplication operator ( * ) takes the current 
value of  counter  (i.e., 0), squares it (also 0), and then assigns that value into the first element ( squares[0] ) 
of the  squares[]  array. After the assignment, control goes to  expression3  and increments the variable that 
controls the loop ( counter++ ). Note that this changes the state of the loop since  counter  controls the number 
of passes being made through the loop. 

 After  expression3  is executed, control immediately goes to  expression2  for re-evaluation. Because 
 expression2  is still logic  true  ( counter  is now 1, which is less than  MAXLOOP ), the  for  statement body is again 
executed. This process repeats up to the point where the counter has been incremented to 10. At that point, 
 expression2  is no longer true, and the first  for  loop terminates. 

 The first statement following the first  for  loop is the start of the second  for  loop. You should be able to 
walk yourself through that code, step by step, on you own. (Don’t just say: “Yeah, I can do that.” Do it!) 

 Most  for  loops behave in a manner similar to that shown in Listing  5-2 . Make sure that you are 
comfortable with how that code works before moving on. As a small test, read the code in Listing  5-3  and 
describe to yourself what it does and what the Five Program Steps are in the program. 

     Listing 5-3. A for Loop Test Program 

  #define LED 13  

  void setup() {  
    // put your setup code here, to run once:  
    pinMode(LED, OUTPUT);  
  }  

  void loop() {  
    // put your main code here, to run repeatedly:  
    int counter;  

    for (counter = 0; counter < 1000; counter++) {  
      if (counter % 2 == 0) {  
        digitalWrite(LED, HIGH);  
      } else {  
        digitalWrite(LED, LOW);  
      }  
      delay(500);  
    }  
  }   



CHAPTER 5 ■ PROGRAM LOOPS IN C

103

 To make sure that your assessment of the code in Listing  5-3  is correct, type the code into your Arduino 
and run it. Did it do what you expected? If not, you should explain to yourself why it performed otherwise. 
It’s a good learning experience. 

     When to Use a for Loop 
 C provides you with several loop flavors, so how do you know which one to select? For the moment, let’s just 
make a simple generalization and say: If you know how many passes are to be made through the loop before 
the loop begins execution, a  for  loop is usually a good choice. 

 Another thing you’ll like about  for  loops is that all three conditions for a well-behaved loop can be 
found within the parentheses of the  for  loop.  expression1  usually is used to initialize the variable that 
controls the loop.  expression2  usually involves a test that results in logic  true  or  false , which determines 
whether another pass should be made through the loop. Finally,  expression3  usually changes the state of the 
loop control variable. The syntax structure of the  for  loop makes room for all of the expressions to be in one 
place, almost forcing you to write a well-behaved loop. 

 I’ll have more to say about this topic after all loop structures have been discussed.   

     The while Loop 
 The second type of loop structure we examine is the  while  loop. The following is the syntax of the  while  loop: 

  while (expression2) {  
       // Statements in the loop body  
  }    // End of while statement block  

 Notice that only  expression2 , the expression that tests whether another pass through the loop statement 
body is needed, appears as an integral part of the  while  loop syntax. Obviously, you can still write a well-
behaved  while  loop; it’s just that the syntax structure doesn’t really confront you with the three conditions 
the way the  for  loop syntax structure does. Indeed, any  for  loop can easily be written as a  while  loop. 

 Let’s rewrite the  for  loop from Listing  5-2  as a  while  loop: 

  // some additional statements  
  counter = 0;                            // This is expression1  
  while (counter < MAXLOOP) {             // This is expression2  
     squares[counter] = counter * counter;  
     counter++;                           // This is expression3  
  }                                       // End of the while loop  

 Notice the placement of the well-behaved loop expressions.

•    The first condition of a well-behaved loop states that the loop control variable must 
be initialized to some known state. With a  while  loop, this initialization step must be 
done  before  you enter the  while  loop because it is not part of the loop syntax itself. 
This is why we have the statement  counter  = 0 just before entering the  while  loop.  

•   The second condition of a well-behaved loop is that some form of logical test must 
be performed on whatever variable controls the loop (i.e.,  counter ). The  while  
loop does have  expression2  as part of its syntax structure, as can be seen by the 
expression that appears within the parentheses that follow the  while  keyword. 
The expression  counter  <  MAXLOOP  in our example is  expression2  for a well-
behaved loop.  



CHAPTER 5 ■ PROGRAM LOOPS IN C

104

•   The third condition of a well-behaved loop is that the state of the variable controlling 
the loop must change. There is nothing that is integral to the  while  loop syntax 
that forces you to write, or even think about,  expression3 . You must supply some 
statement  within  the statements of the  while  loop body that changes the state of 
whatever variable controls the  while  loop. In our example, the statement  counter++  
becomes  expression3 .    

 You should be able to convince yourself that the example  while  loop presented earlier is functionally 
equivalent to the code depicted in Listing  5-2  using the  for  loop structure. The only real difference between 
 for  and  while  loops is that the syntax structure of a  while  loop is a little less “in your face” about the 
expressions necessary to write a well-behaved loop. If you tuck away that fact into the back of your mind, 
you’ll have fewer FFM experiences. 

     When to Use a while Loop 
 If you can write a  while  loop pretty much the same as a  for  loop, which one should you use? Indeed, if they 
are functionally the same, why even have a  while  loop? That’s sorta like asking why have both a tack hammer 
and a sledge hammer in your arsenal of tools. While you could drive tacks with a sledge hammer, the tack 
hammer makes certain tasks a little easier. The same is true with loops: one may be better-suited to a specific 
job than another. 

 Although there are few hard-and-fast rules in programming, we can offer a few guidelines for your loop 
choice decision. As a general rule, if you must perform a task a specific number of times, a  for  loop is often 
the preferred choice. For example, suppose you’re writing a piece of software that must cycle through all of 
the lights in the building at the end of each business day and turn off any lights that are still on. If there are, 
say, 1,500 lights in the building, you know your program code must visit each of those lights to perform its 
task. Because the task must be performed a known number of times, most programmers would probably 
write the code using a  for  loop. 

 Now suppose you are writing a program that must search through an inventory list of an unknown 
number of parts looking for a specific part number. Perhaps the list contains new items that have just been 
added and perhaps some out-of-date items. We are sure, however, that the part number is in the list. When 
that part number is found, you want to exit the loop and use the information associated with the part for 
some additional purpose (e.g., filling an invoice). In this case, you don’t need to examine every part in the 
list; you want to quit the search once you’ve found the part for which you are looking. Most programmers 
code such tasks as a  while  loop. The  while  loop idiom becomes the solution for a “search until” type of 
problem. The main reason is that even though there may be a known maximum number of items to examine 
(i.e.,  expression2 ), once you find what you’re looking for, you bail out of the loop—you do not visit every item. 
The program presented in Listing  5-4  illustrates a  while  type of loop. 

    Listing 5-4. Using a while Loop to Find a Target Value 

  int searchList[200];  

  void setup() {  
    int index;  
    int target = 5343;                          // Part number to find  

    Serial.begin(115200);  

    memset(searchList, 0, sizeof(searchList));  // Clear the array  

    searchList[160] = target;                   // Our target  



CHAPTER 5 ■ PROGRAM LOOPS IN C

105

    index = 0;                                 // Expression1 of well-behaved loop  

    while (true) {                             // Expression2 of well-behaved loop  
      if (searchList[index] == target) {  
        break;  
      }  
      index++;                                 // Expression3 of well-behaved loop  
    }  

    Serial.print("Found target at index = ");  // Display result  
    Serial.println(index);  
  }  

  void loop() {  

  }   

 The code in Listing  5-4  is pretty short, but it has a lot of useful items in it. The first thing we do is define 
an array of 200  int s named  searchList[] . Because we have placed the definition of  searchList[]  outside either 
the  setup()  or  loop()  functions, it is said to have  global scope . We discuss the concept of scope in a later 
chapter. For now, just think of scope as the life and visibility of  searchList[].  That is, the  searchList[]  array can 
be accessed anywhere in the current source file of the program. As a rule, data items with global scope are 
automatically initialized by the compiler to 0. This means that each of the 200  int s in the  searchList[]  array 
have the value of 0 when the definition of the array is finished. Personally, I just don’t make that assumption. 
Because of my distrust of global initializations, I do it myself, as you’ll see in a moment. 

 After  searchList[]  is defined, execution enters the  setup()  function, where we define a couple of  int  
working variables, including one named  target  that we initialize to the rvalue of 5343. We also create a  Serial  
object so we can use the  Serial  monitor to display our program output. Next, we call the  memset()  function 
after filling our backpack with three pieces of information (i.e., function arguments):

•    the name of array we want to initialize  

•   the value we want to initialize the memory to (i.e., 0)  

•   the number of bytes we want to initialize    

 The  memset()  function is often a piece of hand-tweaked assembly language code that the compiler 
people designed to initialize a block of memory to a specific value. (The  memset()  function is part of the 
collection of function libraries that come with the Arduino IDE.) The three function arguments we stuffed 
into our backpack provide the function with the information it needs to set the memory block (i.e., the 
 searchList[]  array) to a specific value (i.e., 0). However, we have not seen the  sizeof()  operator before.  

     The sizeof() Operator 
 The  sizeof()  operator looks like a function call, but it isn’t. Instead,  sizeof() is an operator that returns the 
number of bytes allocated for a data item . Because we have placed the name of the  searchList  array within 
the parentheses of the  sizeof()  operator, evaluating that expression returns the number 400. 

 400? Why 400? 
 The reason is because  searchList[]  is an array of 200  int s. Therefore, because each element in the array is 

an  int  and each  int  requires 2 bytes of memory, the total number of bytes is 200 * 2, or 400 bytes of memory. 
 The next question you should be asking yourself is: How does the compiler know where those 400 bytes 

are in memory? This is worth remembering: in C,  anytime an array name is used by itself, it is viewed by the 
compiler as the lvalue of the array . For example, if our definition of  searchList[]  caused the compiler to locate 



CHAPTER 5 ■ PROGRAM LOOPS IN C

106

the array at memory location 300, the lvalue of the  searchList[]  array is 300. Therefore, from the compiler’s 
point of view, the call to  memset()  

  memset(searchList, 0, sizeof(searchList));  // Clear the array  

 actually looks like 

  memset(300, 0, 400);                        // Clear the array  

 which says: “Go to memory location 300 and set the next 400 bytes of memory to zero.” The value 400, 
remember, is derived from the data type and size of the array (i.e., 200 elements at 2 bytes for each element). 

 Could you initialize the  searchList[]  array to 0 some other way? Sure! You could use something like the 
following code fragment: 

  for (index = 0; index < 200; index++) {  
      searchListing[index] = 0;  
  }  

 The next question, however, is: Why would you? The  memset()  function is going to be at least as fast as 
your  for  loop and is just sitting there waiting for you to use it … plus, it’s already been tested and debugged. 
Why reinvent the wheel? 

 After the call to  memset() , the code sets element 160 of the  searchList[]  array to the target value of 5343. 
This means that  searchList[160]  equals 5343, while all the other 199 values have been set to 0 by the call to 
 memset() . 

 The next statement sets  index  to 0, which is really  expression1  of a well-behaved loop. Note that, 
unlike the  for  loop syntax, a  while  loop has  expression1  set before you enter the loop code. An  if  statement 
checks to see if the array element the code is presently examining (i.e.,  searchList[index] ) is equal to  target . 
If we are looking at one of the elements whose value is 0, the  if  test fails (logic  false ) and the code in the 
 if  statement block is skipped. This means that  index  is post-incremented ( index++ , which is  expression3 ) 
and the code goes back up to the top of the  while  loop to check  expression2 . However, because we wrote 
the  while  loop’s  expression2  as  (true) , the program enters the  while  loop’s statement block and once again 
evaluates the  if  expression. This process repeats up to the point where  index  equals 160. 

 Eventually,  index  is incremented to equal 160. At that point, the  if  test becomes logic  true  and we 
execute the code in the  if  statement block. Because the only statement in the  if  statement block is a  break  
statement, program control immediately breaks out of the  while  loop and executes the first statement 
following the closing brace of the  while  statement block. (The behavior of the  break  statement is similar to 
what you saw with the  switch  statement in Chapter   4    .) In our program, the  break  sends program control to 
the first line after the  while  loop, which does a call to the  Serial  object to display a message and the value of 
 index  where the match was found. Obviously, the value of index is 160. 

 You could rewrite the  while  loop program in Listing  5-3  as a  for  loop if you wanted to and it could be 
made to function exactly the same way. However, the purpose of the program is easily satisfied with a  while  
loop, so that’s what we used.   

     The do-while Loop 
 The third type of loop structure is the  do-while  loop. The syntax is as follows: 

  do {  
            // Loop body statements  
  } while (expression2);  

http://dx.doi.org/10.1007/978-1-4842-0940-0_4


CHAPTER 5 ■ PROGRAM LOOPS IN C

107

 As with the  while  loop, only the second condition ( expression2 ) is an integral part of the loop structure. 
It is your responsibility to supply the missing two expressions of a well-behaved loop. Also, even though 
this form of loop structure is similar to a  while  loop, it has one major difference: with a  do-while  loop, you 
are guaranteed that the loop body statements are executed at least one time. Consider the following code 
fragment for a standard  while  loop: 

  int k = 1001;  
  while (k < 1000) {  
         DoSomethingCool(k);  
         k++;  
  }  

 When program control first enters the  while  loop, the test on  k  fails because  k  was initialized 
to1001. Because  expression2  is logic  false  ( k  is not less than 1000), the loop body statement to call 
 DoSomethingCool()  is never executed. (You could write a  for  loop that initializes  k  to 1001 and get the same 
result, right?) 

 Now let’s rewrite the code as a  do-while  loop: 

  int k = 1001;  
  do {  
          DoSomethingCool(k);  
          k++;  
  } while (k < 1000);  

 In this case, the call to  DoSomethingCool()  is made even though  k  is initialized ( expression1 ) to the same 
value as in the  while  loop fragment. 

     Why a do-while is Different from a while Loop 
 Therefore, the same conditions for  expression1  cause different results, depending on whether you use a  while  
or a  do-while  loop structure. The difference is because  expression2  performs its test at the  bottom  of the  while  
loop after the statements in the loop body have been executed at least one time. The moral of the story is: 
it is possible to never execute the statements in the loop body with either the  while  or  for  loops structures. 
However, you are guaranteed that at least one pass through the loop body statements is made with a  do-
while  loop. You will likely find that you use the  do-while  loop variant much less frequently than the other two 
loop structures. Still, it’s another tool to add to your tool belt.   

     The break and continue Keywords 
 The  break  and  continue  keywords are often used within loop structures. Simply stated, a  break  statement 
sends program control to the statement that immediately follows the closing brace of the enclosing 
statement body. (The enclosing statement body doesn’t have to be a loop structure, it can also be 
a  switch  statement block.) The  continue  statement immediately sends program control to the test 
conditions of the loop (i.e.,  expression2 ) for this pass through the loop. That is, any statements contained 
in the loop following the  continue  statement in the statement block are skipped when the  continue  
statement executes. 



CHAPTER 5 ■ PROGRAM LOOPS IN C

108

     The break Statement 
 An example may help you see how the  break  statement works. Suppose you have a situation where you 
monitor the temperature of 200 vats filled with chemicals. When you find one that has reached a specified 
temperature, you exit the loop and call a method that adds another ingredient to that vat. How might you 
code such an algorithm? Consider the following code fragment: 

  #define MAXVATCOUNT 200  
  #define GOALTEMPERATURE 160  
  // Some statements and setup()  
  int vatTemperature;  
  int counter = 0;  
  loop() {  
          while (counter < MAXVATCOUNT) {  
                 vatTemperature = ReadVatTemp(counter);  
                 if (vatTemperature >= GOALTEMPERATURE) {  
                         break;  
                 }  
                  counter++;  
                  if (counter == MAXVATCOUNT) // Reset so we stay in loop  
                          counter = 0;  
          }  
          AddChemicals(counter);  
          if (counter < MAXVATCOUNT) {  
                  counter++;  
          } else {  
                  counter = 0;                // Just in case this is the last vat  
          }  
  }  

 Now walk through the code, concentrating on the  while  loop. Because  counter  is initialized to 0, the 
 while  test is true ( counter  is less than or equal to 200) so the code calls  ReadVatTemp(counter) , which reads 
the temperature for vat number 0. That temperature is then assigned into  vatTemperature . Let’s assume 
that the temperature is 150 degrees. The  if  test will fail, causing  counter  to be incremented by 1 ( counter  
now equals 1). The program then uses an  if  statement to test whether  counter  is less than  MAXVATCOUNT . 
Because the outcome of the  if  test is  false  (i.e.,  counter  is not equal to  MAXVATCOUNT ),  counter  remains 
unchanged, and control is passed back to the  while  loop test  expression2  (i.e.,  counter  <  MAXVATCOUNT ). 
Because  counter  is still less than  MAXVATCOUNT , the process repeats. 

 Let’s suppose the first 50 vats don’t have the required temperature. However, vat number 51 does 
return a temperature that is equal to  GOALTEMPERATURE . Because the two temperatures are equal, the 
 break  statement is executed. Because a  break  statement causes program control to be transferred to the 
first statement following the closing brace of the loop structure,  AddChemicals(counter)  is called and the 
chemicals are added to vat number 51 (the rvalue stored in  counter ). The code must then increment  counter . 
(Otherwise we might “double-add” chemicals to the same vat. We assume that the vat has enough time 
before the loop revisits the vat for the reaction to have changed the temperature.) Because these statements 
are contained within the  loop()  function, program control is transferred back to the top of the loop body and 
the  while  statement is again tested using the new value for  counter . 

 It should be clear that the  break  statement is used to exit a loop before the test in  expression2  would 
terminate the loop. It should also be pointed out that the  break  statement only breaks out of the loop containing 
the  break  statement. If you are using nested loops, it may take multiple  break  statements to completely exit all 
loops.  



CHAPTER 5 ■ PROGRAM LOOPS IN C

109

     The continue Statement 
 Can you rewrite the preceding  break  code example to use a  continue  statement? Consider the following: 

  #define MAXVATCOUNT 200  
  #define GOALTEMPERATURE 160  
  // Some statements...including setup() code  
  int vatTemperature;  
  int counter = 0;  
  loop() {  
          while (counter <= MAXVATCOUNT) {  
                 vatTemperature = ReadVatTemp(counter);  
                 if (vatTemperature < GOALTEMPERATURE) {// Big difference  
                        counter++;  
                        if (counter > MAXVATCOUNT)  
                                counter = 0;  
                        continue;  
                 }  
                 AddChemicals(counter);  
                 if (counter < MAXVATCOUNT) {  
                         counter++;  
                 } else {  
                         counter = 0;                   // Just in case this is the last vat  
                 }  
          }  
  }  

 If you walk through the code, you should be able to convince yourself that the program behaves much 
the same way it did before, but using a  continue  statement instead of a  break . Note how the program control 
flow is slightly different now. If the vat temperature is less than the goal temperature, the  continue  statement 
executes, which sends control to  expression2  of the  while  statement, thus ignoring all of the statements that 
follow the  continue  statement. The same caveat applies to  continue  statements within nested loops. The 
 continue  statement sends control to the expression for the loop containing the  continue  statement. Although 
you won’t use the  continue  statement that often, sometimes it offers a clean alternative for coding a loop.   

     A Complete Code Example 
 Let’s reuse the circuit you used from Chapter   4     for the Heads or Tails program (see Figure   4-2    ). However, this 
time let’s use the random number generator and look for a specific value to be produced. When the desired 
value is found, the code should light the “found it” LED for one second, send a message to the PC via the 
 Serial  monitor, and report the value of the loop counter. However, each time we cycle through the positive 
values for the  int  variable that is controlling the loop, we should light the other LED for one second and send 
a message back to the PC to show how many times we have recycled the  int . (Recycling the  int  is explained 
in a bit.) 

 Recall that the random number generator returns a  long  data type, which means there are several 
billion possible return values from the random number generator. That could mean a long time between 
LED flashes. Rather than growing a beard while we wait, let’s limit the range of the random number 
generator to values between 0 to 5000. 

 Given all this information, how should you start coding the solution? You start with the Five Program 
Steps. 

http://dx.doi.org/10.1007/978-1-4842-0940-0_4
http://dx.doi.org/10.1007/978-1-4842-0940-0_4#Fig2


CHAPTER 5 ■ PROGRAM LOOPS IN C

110

     Step 1. Initialization 
 We need to set up the I/O pins and the baud rate for the  serial  communication back to the PC, establish a 
target numeric value, define our working variables, and seed the random number generator.  

     Step 2. Input 
 The input process is fairly simple: it’s the value returned from a call to the random number generator.  

     Step 3. Process 
 In this case, all we need do is check to see if the data from the random number generator is equal to our 
target value. If the value is equal to our target value, we need to prepare to turn on the “found it” LED. We 
also need to increment our pass counter variable and see if it is still positive. If not, we need to get ready to 
flash the recycle LED.  

     Step 4. Output 
 If a match was found, we need to turn on the “found it” LED for one second. We also need to output a 
message to the PC with the current value of the counter variable. If the counter variable went negative, we 
need to turn on the recycle LED for one second and send a message to the host PC.  

     Step 5. Termination 
 Let’s put in a termination condition. If the recycle LED has “flipped” five times, let’s shut the program down. 
The  Serial  monitor will tell us when the program ends. 

 You should try to write the code yourself at this point. You have enough knowledge under your belt to 
get the job done. It would be a cop-out to just read the following code and move on. You will learn  much  
more, however, if you try to write the code first. 

    Listing 5-5. Random Number Match 

  // define the pins to be used.  
  #define MAX 5000L  
  #define MIN 0L  
  #define TARGETVALUE 2500L  

  #define MAXRECYCLES 5  
  #define FOUNDITIOPIN  10        // Use the green LED  
  #define RECYCLEIOPIN  11        // Use the red LED  
  #define PAUSE 1000  

  int foundIt = FOUNDITIOPIN;  
  int recycle = RECYCLEIOPIN;  
  long randomNumber;  
  int recycleCounter = 0;  
  int counter = 0;  



CHAPTER 5 ■ PROGRAM LOOPS IN C

111

  void setup() {  

    Serial.begin(9600);  
    pinMode(foundIt, OUTPUT);  
    pinMode(recycle, OUTPUT);  
    randomSeed(analogRead(A0));         // This seeds the random number generator  
  }  

  void loop() {  

    while (counter != -1) {             // Check for negative values  
      randomNumber = generateRandomNumber();  
      if (randomNumber == TARGETVALUE) {  
        Serial.print("Counter = ");  
        Serial.print(counter, DEC);  
        Serial.print("  recycleCounter = ");  
        Serial.println(recycleCounter, DEC);  
        digitalWrite(foundIt, HIGH);  
        delay(PAUSE);  
        digitalWrite(foundIt, LOW);  
      }  

      counter++;  
      if (counter < 0) {                // We've overflowed an int  
        counter = 0;  
        recycleCounter++;  
        Serial.print("recycleCounter = ");  
        Serial.println(recycleCounter, DEC);  
        digitalWrite(recycle, HIGH);  
        delay(PAUSE);  
        digitalWrite(recycle, LOW);  
      }  

      if (recycleCounter == MAXRECYCLES) {  
        FakeAnEnd();                    // End program  
      }  
    }  
  }  

  long generateRandomNumber()  
  {  
    return random(MIN, MAX);            // Generate random numbers 0 and 5000  
  }  

  void FakeAnEnd() {                    // Fake the end of the program  
    while (true) {  
      ;  
    }  
  }   

 You should feel fairly comfortable when looking at the code. The  setup()  function initializes the baud 
rate for communicating with the host PC. The I/O pins are set and the random number generator is seeded. 



CHAPTER 5 ■ PROGRAM LOOPS IN C

112

Inside the  loop()  function, the  while  loop tests to see if  counter  is negative;  counter  is an  int , so if the current 
value is 32,767 and it is incremented one more time, the value “rolls over” because the high bit (or the sign 
bit) changes to a 1, which is interpreted as a negative number. This is what is meant by “recycling the  int ”. 

 Because  counter  is initialized to 0 when the program starts, the first  while  test is logic  true  and we enter 
the loop statement body. The code then calls the random number generator and checks the value against 
the target value. If they match, an appropriate message is sent to the PC over the serial link and the “found 
it” LED is lit for one second. If no match is found,  counter  is incremented. The  if  test then checks to see if 
 counter  “rolled over” to a negative value. If it did,  counter  is reset to 0, the  recycleCounter  is incremented, a 
message is sent to the PC, and the recycle LED is lit for a second. 

 Finally, the code then checks to see if the  recycleCounter  equals the maximum number of recycles we 
wish to run (i.e., equal to  MAXRECYCLES ). If so, the call to  FakeAnEnd()  makes it look like the program 
ends. What actually happens is we create a  while  loop that has no  expression1  or  expression3 . If you think 
about it, a loop that is missing those expressions results in an infinite loop because the state of the loop never 
changes. An  infinite loop, therefore,  is a loop that never ends. Because there are no statements in the infinite 
loop, it appears that the program has ended. However, what is really happening is that we are spinning 
around in a tight  while  loop doing nothing.  

     Listing 5-5 Is SDC 
 The code in Listing  5-5  is Sorta Dumb Code (SDC) for several reasons, even though it does perform as 
designed. First, look closely at the code and ask yourself: Does the  while  test ever have a chance to see a 
negative value for  counter ? The answer is No. The reason why the  while  statement never sees a negative 
value is because we check for that possibility within the  while  loop code itself, and change it to 0 if it is 
negative. Therefore, you might as well replace the  while  test with 

  while (true) {  

 which sets up an infinite loop for the  while  test. This is a more honest statement than the phony test 
Listing  5-5  uses. (If something is always true, why waste the resources to test it?) The fact that we’ve created 
an infinite loop won’t be a problem because we use  FakeAnEnd()  to terminate the program anyway. 
Think about it. 

 Secondly, any time you see a repeating code pattern, try to think of ways to simplify it. In our case, the 
statements 

  digitalWrite(foundIt, HIGH);  
  delay(PAUSE);  
  digitalWrite(foundIt, LOW);  

 and 

  digitalWrite(recycle, HIGH);  
  delay(PAUSE);  
  digitalWrite(recycle, LOW);  

 are almost the same. Why not replace these statements with 

  ToggleLED(foundIt, PAUSE);  

 and 

  ToggleLED(recycle, PAUSE);  



CHAPTER 5 ■ PROGRAM LOOPS IN C

113

 and write the following new function: 

  void ToggleLED(int whichLED, int howLong) {  
       digitalWrite(whichLED, HIGH);  
       delay(howLong);  
       digitalWrite(whichLED, LOW);  
  }  

 While these are minor changes, they do remove some clutter from the loop body and make it a little 
easier to read. (A more detailed discussion of writing functions is presented in Chapter   6    . However, the 
function discussed here is a pretty simple improvement to identify and a simple function to write.) 

 The process of simplifying or “cleaning up” the code is called  refactoring . While refactoring in this 
case may save a few bytes of memory and add the time overhead of a function call, these impacts are quite 
small. Is it worth it? To me, yes, it is. Anytime I can do anything that makes the code easier to read with 
little or no performance or resource penalty, I make the change. Sometimes I feel that in the rush to get 
something to work, I cobble the code together with bailing wire and chewing gum. Refactoring simply allows 
me to go back and reexamine the code so I can remove the bailing wire and chewing gum. Indeed, just 
 thinking  about future code refactoring will make you a better programmer as you write the code.  

     Getting Rid of a Magic Number 
 The code fragment we used to discuss the  sizeof()  operator, however, should have caused your brain to itch a 
little. Why? One reason is because the  for  loop had a “magic number” (200) in it: 

  for (index = 0; index < 200; index++) {  

 Suppose you increase the list size 200 to 210 elements. Now you have to plow through all of the source 
code looking for each occurrence of 200 and change it to 210. As I mentioned in an earlier chapter, this is a 
very error-prone process. 

 What if we rewrote the  for  loop as the following? 

  for (index = 0; index < sizeof(searchList) / sizeof(searchList[0]); index++) {  

 Given what you know about the  sizeof()  operator, the statement resolves to 

  for (index = 0; index < 400 / 2; index++) {  

 which reduces to: 

  for (index = 0; index < 200; index++) {  

 Recall that  sizeof()  returns a byte count of a specific data item, so the expression  sizeof(searchList)  
returns 400, as you saw earlier. Likewise, the expression  sizeof(searchList[0])  returns the size of a single 
element of the  searchList[]  array, or 2 bytes for each  int  element. 

 So, what is the advantage of using the  sizeof()  form in the  for  loop? Well, if you increase the size of the 
array to 210, the expression factors out to: 

  for (index = 0; index < 420 / 2; index++) {  
  for (index = 0; index < 210; index++) {  

http://dx.doi.org/10.1007/978-1-4842-0940-0_6


CHAPTER 5 ■ PROGRAM LOOPS IN C

114

 Now that you have removed the magic number and replaced it with the  sizeof()  expressions, if you 
change the array size, recompiling the code automatically changes to the new array size for you! No error-
prone process to wade through. 

   A Macro for an Array Size 
 This array size calculation using  sizeof()  is so useful that programmers often create what is called a 
 parameterized macro  definition for it. Recall that a  #define  is a preprocessor directive that causes a textual 
substitution in the source code. Suppose you write this at the top of your program source code: 

  #define ArrayElementSize(x)   (sizeof(x) / sizeof(x[0]))  

 Now further suppose you write the  for  loop like this: 

  for (index = 0; index < ArrayElementSize(searchList); index++) {  

 When the preprocessor pass finishes making its pass over your source code, the preceding statement 
becomes this: 

  for (index = 0; index < sizeof(searchList) / sizeof(searchList[0]); index++) {  

 Look familiar? Note how the  x  in the macro is replaced by the array name  searchList[]  after the 
preprocessor does its magic. The parameterized macro named  ArrayElementSize()  allows you to pass a 
parameter (i.e., the name of the array) to the macro, which can then determine the element count for the 
array. Shazam! Less work for you to do and no magic numbers to boot!    

     Loops and Coding Style 
 The question of coding style relative to program loops really boils down to a few simple questions. First, 
if a loop only controls a single statement, braces are  not  necessary to mark the start and end of the loop 
statement body. So the question becomes one that we first asked when you studied  if  statements: If the 
braces are not necessary, should I bother using them? 

 Yes … next question. 
 Okay, rather than a flippant answer, the reason is because, more often than not, you will end up adding 

one or more statements to the loop statement body, thus forcing you to add the braces anyway. This is 
particularly true of debugging statements that use  Serial.print()  to examine the values of variables. Always 
adding the braces also lends consistency to your code, and that’s almost always a good thing. Finally, the 
braces make it easy to see the start and end of a statement block. 

 One mistake you will make is forgetting to have a matching closing brace. This happens most often when 
you have a large number of program statements being controlled by the loop. You can always tell which is 
the matching brace by placing the cursor immediately to the right of a brace. The IDE will highlight the other 
brace that goes with the block defined by the brace. This works for both opening and closing braces. 

 The second question is: Should I place the opening brace of the loop statement body on the same line 
as the loop keyword (e.g.,  for ,  while ) or should I drop it down to the next line? That is, should you use 

  for (k = 0; k < 1000; k++) {     // brace on same line  

 or 

  for (k = 0; k < 1000; k++)  
  {                               // brace on new line  



CHAPTER 5 ■ PROGRAM LOOPS IN C

115

 Actually, I prefer to leave the opening brace on the same line as the loop keyword because that lets me 
see one more line of source code without having to scroll the display. Also, that was the “K&R” style back 
in the Dark Ages when I first started using C. However, some IDEs, like Visual Studio, default to placing 
the brace on the next line below the first letter of the loop keyword. Also, there are a lot of programmers 
who prefer the brace on a new line because it makes it easier to see the statement block. If you work in a 
corporate environment, you may not have a choice and have to use the style dictated by the shop. If you do 
have a choice, whatever style you select, use it consistently. 

 Third, I don’t think I’ve ever seen a competent programmer who does not indent the statements within the 
loop body one tab stop. This is one of those situations where, if you see someone jump off a bridge, you  should  
follow suit and jump off, too. Always indent the statements within a loop statement body (and  if  and  switch  
statement blocks, too!) It makes them stand out and easier to read, and “easier to read” means less time spent 
debugging. If you’re lazy, you can always use Ctrl+T (or Tools ➤ Auto Format) and let the IDE format your code. 

 Finally, sometimes you read code where there is a very long loop body with a ton of statements within 
the loop body. In those cases, you might see something like this: 

  while (k < MAXCOUNT) {  
          // a bunch of loops statements  
  }                                        // End: while (k < MAXCOUNT)  

 The intent of the comment at the end of the closing loop brace is to help find where the loop statements 
start and end. I rarely do this, but perhaps I should. However, as mentioned earlier, if you place the cursor 
immediately after the closing brace of a loop, the Arduino IDE “boxes” the matching opening brace up at 
the top of the loop. Because of this, and even though the comment is laudable, I usually don’t bother adding 
such comments.  

     Portability and Extensibility 
 Often you hear programmers talk about writing “portable code.” Writing portable code is a goal that good 
programmers try to fulfill. Simply stated,  portable code  refers to  program source code that can be moved from 
one programming environment and successfully recompiled in a different programming environment with no 
changes to the source code.  It would be like taking a program written for the Arduino IDE and successfully 
recompiling it without change in the Visual Studio IDE. 

 Why is writing portable code so hard? There are a bunch of reasons. First, it’s pretty unlikely that all 
of the functions you find in the Arduino IDE are the same as those in the Visual Studio (or NetBeans, or 
Enterprise, etc.) IDE. For example,  pinMode()  doesn’t even exist in Visual Studio’s IDE. Still, if you stick with 
functions that are part of the Standard C library for most of your code (e.g., like  memset() ), chances are pretty 
good that the Visual Studio C compiler also has those library functions, too. 

 Another portability problem is data type sizes. For example, suppose you are writing hourly 
temperature data to an SD card. Further suppose you need to know the number of bytes written to the file 
each day. You could write it as something like 

  bytesWritten = 48;  

 because you know each  int  takes 2 bytes for the Arduino IDE, so 24 * 2 equals 48. Well, there you go again—
using those stupid magic numbers! If you decide at some later date that you need to write the data every 30 
minutes, you’re back to the search-and-replace issues again. 

 Instead, you write this: 

  #define SAMPLESPERDAY   24  
  bytesWritten = SAMPLESPERDAY * 2;  



CHAPTER 5 ■ PROGRAM LOOPS IN C

116

 Better, but still SDC. What if you move from the Arduino to a bigger microcontroller that uses 
4-byte  int s, like the netDuino does? Now you are not using enough bytes for the data. So you modify the 
preprocessor statements again to: 

  #define SAMPLESPERDAY   24  
  bytesWritten = SAMPLESPERDAY * sizeof(int);  

 Now you have  bytesWritten  coded in such a way that it is portable between the Arduino and the 
netDuino, even though their  int  sizes are different. Writing code with the idea of portability in the back of 
your head is always a good thing. 

 Okay, so what does  extensible code  mean? Code is  extensible  if it  can accommodate different sized data 
sets without changes to the source code . In other words, if you are writing code to work with a company’s 
inventory list of 1000 items, extensible code means that you could take the same code and easily implement 
it for another company that has an inventory list with 5,000,000 items in it. Extensible code is desirable, 
especially in a business environment, because the software can grow painlessly with the company’s growth. 

 Often code fails (and extensibility ends) at what are called  boundary conditions . For example, if your 
inventory list has up to 1000 items in it, the boundary conditions are 0 and 1000. Boundary conditions set 
the limits for many program structures, like  for, while,  and  do-while  loops. Program bugs love to hide in 
boundary conditions. For example, beginning programmers might write this: 

  for (i = 1; i = 1000; i++) {  
     if (target == inventoryList[i])  
        break;  
     // more code...  
  }  

 There are a number of problems here. First, arrays start with 0, not 1, so the lower boundary condition 
(i.e., 0) never gets used. Second,  expression2  in the  for  loop should be a relational test, not an assignment 
operator, so that’s going to cause problems. Third, if they replace the assignment operator ( = ) with the 
test for equality ( == ), the code may die an spectacular death because the  if  test expression becomes  i  == 
 inventoryList[1000]  at the upper boundary, even though there are only 0–999 valid inventory indexes. 

 Once again, getting rid of magic numbers is the first step to making the code extensible. Defining your 
arrays like this 

  #define MAXINVENTORY 1000  
  // more code...  
  int inventoryList[MAXINVENTORY];  

 makes it easier to extend the program without using error-prone processes like global search-and-replace. 
 Finally, think before you write. A few minutes defining the Five Program Steps for a given problem is 

a minimal preparation step to writing a new program. Thinking and preparation makes writing programs 
easier—and easier usually means more enjoyable.  

     Summary 
 Because of the way Arduino C uses the  loop()  function in all its programs, you have been using loops since 
you ran your very first program. However, this chapter has introduced you to program loops in a more formal 
way, plus making you aware that there are several different loop structures. You should now be comfortable 
using  for ,  while , and  do-while  loops in your programs. You should also understand what the necessary and 
sufficient conditions are for a well-behaved program loop. 



CHAPTER 5 ■ PROGRAM LOOPS IN C

117

 Take some time to invent a few loop programs of your own. If you can tie the code to a circuit, so much 
the better. You will always learn more if you try to create your own code. 

  EXERCISES 

     1.    Look at the following code fragment:     

               int k;  
               for (k = 0; k < 1000; k++) {  
                           k = DoSomethingCool(k);  
               }  

 What happens if the function  DoSomethingCool()  ends up decrementing  k  before it passes 
the value back to the  for  loop statement body? 

 Answer: If the function decrements  k , on the first pass the value assigned into  k  by 
 DoSomethingCool()  is –1. That value is then passed to  expression3 (k++) , which 
increments  k  to 0. Control then passes to  expression2 , which checks to see if  k  is less 
than 1000. Because  k  is now 0 again, the call to  DoSomethingCool()  is called again, 
which assigns –1 into  k  … again. Clearly, this ends up in an infinite loop.

    2.    What happens in the following code fragment?     

               #define EVER ;; // Just two semicolons...  

               // Some statements  

               for (EVER) {  
                    // Do some statements here  
                }  
               // The rest of the program  

 Answer: Know what? I'm not going to tell you. Instead, create a small program with this 
code in the  loop()  function and make the following changes: 

               for (EVER) {  
                    Serial.println("Pass... ");  
               }  

 And then look on the Arduino IDE monitor (Ctrl+Shift+M) to see what happens. Try to explain 
what you see.

    3.     Suppose you want to find a part that has the numeric ID number 1000 out of 
an inventory that has 500,000 items. Although all part numbers are present in 
the inventory list, they are not necessarily in sorted order. (That is, you can’t 
assume that part number 1000 is the 1000 th  item in the inventory list.) Write a 
code fragment for the loop to look for the part number?     

 Answer: Did you write code similar to the following? 

               #define INVENTORYCOUNT 500000  

               int counter = 0;  



CHAPTER 5 ■ PROGRAM LOOPS IN C

118

               int partLocated;  
               int targetPart;  
               targetPart = PartToLookFor();  // Assume this sets k = 1000  
               while (counter <=  INVENTORYCOUNT) {  
                        partLocated = NextPartNumber(counter);  
                        if (partLocated ==  targetPart)  
                             break;  
                      counter++;  
               }  

 If you did, ask yourself this: What is the size of the inventory count and what is the maximum 
number that can be expressed with an  int?  Look at Table   3-1     and fix the problem.

    4.     In the most general terms possible, when would you use the various loop 
structures?     

 Answer: Use the  for  loop when you must execute the loop body a known number of times. 
Use a  while  loop when you are looking for a particular value in a list of possible values. Use 
a  do-while  loop when you must execute the statements in the loop body at least one time 
while searching a list.

    5.     What is refactoring?     

 Answer: Refactoring is the process of looking for ways to simplify and “clean up” your 
code. Some of the biggest benefits of refactoring are to make the code more readable and 
perhaps more efficient by removing duplicate or redundant code. You can find more details 
at    http://c2.com/cgi/wiki?WhatIsRefactoring     .

    6.    Which loop coding style do you prefer and why?     

 Answer: There is no answer. It will depend upon how you feel about style or whether you 
even have a choice. Your style may be dictated by company guidelines.

    7.     Remember the TV show  Knight Rider ? The car named Kitt has a series of lights 
that would sequence on and off, from left to right. Using Figure   4-2     as a guide, 
add 5 or 6 more LEDs to the circuit. Now figure out the code to make the LEDs 
flash in a sequence similar to Kitt’s lights.     

 Answer: I’m not going to show you the code, just give you some hints. 

               int leds[] = {4, 5, 6, 7, 8, 9, 10};  // These LEDs are wired to pins 4-10.  

               void setup() {  

                 int i;  

                 for (i = 0; i < sizeof(leds) / sizeof(leds[0]); i++) {  
                    pinMode(leds[i], OUTPUT);       // Initialize LEDs for output  
                 }  
               }  

               void loop() {  
                 // you're on your own...  

                     }       

http://dx.doi.org/10.1007/978-1-4842-0940-0_3#Tab1
http://c2.com/cgi/wiki?WhatIsRefactoring
http://dx.doi.org/10.1007/978-1-4842-0940-0_4#Fig2


119© Jack Purdum 2015 
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming 
for the Arduino, DOI 10.1007/978-1-4842-0940-0_6

    CHAPTER 6   

 Functions in C           

 You already know what a function is, but let’s give it a formal definition. A  function  is a  body of code designed 
to solve a particular task . You should think of a function as a black box, the contents of which are unknown 
to you. All you care about is that it addresses some task to be accomplished in your program. Hundreds of 
functions are available for you to use in various function libraries. A  function library  is simply a collection of 
functions that share a common area of interest (e.g., the Math and Time functions in Arduino C.) However, 
many vendors have added new libraries of their own to support products and add-ons that they sell for the 
Arduino family. Functions make your life easier because you can stand on the shoulders of those who came 
before you. You can use their code rather than writing, testing, and debugging the code yourself. 

 In this chapter you will learn

•    The various components that make up a C function  

•   What function arguments are  

•   What function parameters are  

•   How data is passed between your program and a function  

•   Which design considerations are important when designing a function  

•   What “pass-by-value” means  

•   What a program stack is and how it is used with functions  

•   What a function signature is  

•   What an overloaded function is    

 There is a lot of information packed into this chapter. Take your time and think about what you are 
reading … functions are a basic building block of all C programs. 

 The backbone of C is its robust library of functions. In fact, C is one of the few languages that doesn’t 
have any I/O capability built into the language. Initially, ANSI C only had 32 keywords; Arduino C has 
slightly less. Contrast those keyword counts with a language like Visual Basic with over 170 keywords 
and you may wonder how you can do anything with C. Actually, C purposely was designed to be a crisp 
language with a minimal number of keywords. Rather than bloat the language with a high keyword count, 
C pushes many standard language tasks off into its standard function library. The neat part about this 
approach is that you are not constrained by the way the language does things. If you don’t like the way the 
existing library routines do things, you are free to write your own replacement. Later on in this chapter, we 
will write a replacement for the standard library routine that determines if a specified year is a leap year. 
While I may think my  IsLeapYear()  function is better than yours, you are free to disagree and write your own 
replacement. Such a design philosophy makes it easy to modify or extend the language as you see fit. 



CHAPTER 6 ■ FUNCTIONS IN C

120

     The Anatomy of a Function 
 Later in this chapter you will write a short program that asks the user to enter a year, and the program 
informs the user if the year entered is a leap year. In doing this, you will write a function named  IsLeapYear()  
that tests whether a given year is, in fact, a leap year. 

 Let’s take a look at the general structure of a C function, as shown in Figure  6-1 .  

Function body

int IsLeapYear(int year)
{
    // The statements that perform the task
}

Function type specifier

Function name

Function argument(s)

  Figure 6-1.    Parts of a function       

     Function Type Specifier 
 First, the function type specifier appears at the start of the function definition. In our example, we want the 
function to return an integer value. For my specific purposes, I want the function to return the  int  value 1 if it 
is a leap year, and 0 if it is not. Most leap year functions return a Boolean value that is logic  true  if it is a leap 
year, and logic  false  if not.  The purpose of a function type specifier is to define the type of data that is returned 
when the function is called.  Recalling our backpack analogy, the function type specifier tells you the type of 
data the function code placed in your backpack just before you left the function and returned to the caller. 
The type of data returned from the function can be whatever data type you wish it to be (e.g.,  float ,  long ,  char , 
 byte , etc.), depending on how you write your function’s code. If no value is returned from the function, the 
type specifier must use the  void  keyword for the function type specifier. 

 ■   Note   Just because the function places a piece of data in your backpack to haul back to the caller does 
not force the caller to actually use that data. Indeed, each of the  Serial.print()  methods you have used in 
previous programs returned a count of the number of characters printed, but we have yet to actually use that 
information. Each function description should tell you the function type specifier, and, hence, what’s in your 
backpack when you leave the function.   

     Function Name 
 The second part of a function is the name of the function. Function names follow the same naming rules 
you use for variable names. Most library functions start with a lowercase letter, although that is not a 
requirement of the language. Personally, I tend to start the name of functions that I write with an uppercase 
letter so that I know that I wrote the function and it did not come from a library of functions written by 
someone else. Again, this is not a naming rule, simply a style convention I tend to follow. That way, if 
something in the code isn’t working correctly and I see an uppercase function name, I know that I wrote that 
code and it may contain the error. (Chances are pretty slim that an error exists in public library functions.) 

 



CHAPTER 6 ■ FUNCTIONS IN C

121

   Good Names, Bad Names 
 The choice of a function name does matter. Good function names tell you  what  the function does, but 
not  how  it does it. For example, suppose you need to search a list of data to find a particular value. There 
are many different ways to organize and search the list of data (e.g., sort into ascending order, create 
a binary tree, use hash codes, etc.) You decide to sort the data and then search the list using a binary 
search algorithm. You name the function  DoBinarySearch() . Now fast-forward a few months, you now 
have learned how to use hash codes, and you discover that the hash algorithm will significantly improve 
the performance of your program. You write the function and name it  DoHashSearch() . Now you have 
to go back through your source code and change all instances of  DoBinarySearch()  to  DoHashSearch().  
True, you could just change the code in the  DoBinarySearch()  to implement the hash code algorithm, 
but that seems a little deceptive. Also, if someone else has to look at your code, they read it expecting to 
find a binary search algorithm and end up scratching their head because they are reading a hash code 
algorithm. 

 A better name for the function would be  FindListItem() . The reason it’s a better name is because it tells 
the user of the function  what  the function does, not  how  it’s done. If you decide to implement a different 
algorithm at some later date, you can do so with a clear conscience because the function name says nothing 
about how things are done. A function should be a black box in that it tells you what it does, but provides no 
details on its implementation. 

 Some of you are saying: “But major language and compiler vendors do have functions named 
 ShellSort() ,  QuickSort() , and other algorithm-specific names.” True, but you want your functions to be 
 task-specific , not  algorithm-specific . If you are working with a language that offers you a choice, great! 
However, I would still write my own function, as in: 

  int FindListItem(int list[], int target)  
  {  
     ShellSort(list);                      // Sort the data  
     return FindItem(list, target);        // Find the item  
  }  

 In this case, you’ve wrapped the details of  how  the sort is done in a function that says  what  is to be done. 
If you decide later than some other algorithm works better, it is very easy to make the change and you don’t 
have to lie about the implementation. Even better, the person using your code doesn’t have to do a search-
and-replace in their program. A simple recompile and your new algorithm is in the program!   

     Function Arguments 
 After the function name comes an opening parenthesis followed by zero or more function arguments. 
 Function arguments are used to pass data to the function that it may need to perform its task.  In earlier 
chapters, we used the analogy of stuffing data into your backpack prior to calling the function. Those pieces 
of data were function arguments. Multiple function arguments are delineated with commas between 
arguments. You often hear programmers refer to function arguments as an  argument list . The argument list 
ends with a closing parenthesis. 

 As mentioned before, you can think of a function as a black box with a front door, back door, and 
no windows. (What goes on inside the black box, stays inside the black box … no peeking as to its 
implementation.) Program control enters the front door carrying a backpack with any data in it that 
the function needs to perform its task. The contents of the backpack are the function arguments. Some 
functions, like the  setup()  and  loop()  functions you’ve seen in every program, do not need outside help to 
do their thing. In these cases, the function has a  void  argument list and the backpack is empty. (Indeed, you 
can write the word  void  as the argument list for both  setup()  and  loop(),  recompile the program, and the 
compiler is completely happy with the changes.) 



CHAPTER 6 ■ FUNCTIONS IN C

122

 After the function does its thing, the backpack emerges from the back door. The content of the backpack 
is the data produced by the function. The type of data that is stuffed into the backpack is dictated by the 
function type specifier of the function. If the backpack is empty, the type specifier for the function is  void . 
If, for example, the backpack contains a floating point number when control exits the back door, the 
function type specifier for that function must be either  float  or  double,  depending upon the type of data the 
programmer who wrote the function decides is needed. 

 For example, consider the following: 

  int buyNails;  
  int nailsPerFoot;  
  int numberOfFeet;  
                          // some more code...  
  buyNails = NailsNeeded(nailsPerFoot, numberOfFeet);  

 The  NailsNeeded()  function has two arguments,  nailsPerFoot  and  numberOfFeet . In this example, the 
argument list for the backpack is stuffed with the value of these two  int  rvalues and control is sent to the 
 NailsNeeded()  function. Once inside the function’s front door, program code removes the two  int s, does 
some form of calculation, places a count of the nails needed as an  int  into the backpack, and sends control 
back to the caller. Upon return from the function, the content of the backpack is then dumped into the 
rvalue of the variable named  buyNails . Stated differently, the content of the backpack becomes the rvalue 
of  buyNails . One of the advantages of function arguments is that the compiler can check to ensure that you 
are passing the correct type of data to the function. For example, if you tried to make the call to the standard 
library function named  bit()  using this 

  bit(2.33);  

 the compiler complains because it knows that the argument to the function cannot be a floating point 
number. Catching this kind of mismatch between the type of data being sent to a function and the data type 
that the function expects is one form of  type checking . The compiler also performs type checking on the 
value returned from a function … sort of. Suppose you want to square the value 10,000. You could write 

  int val = pow(10000, 2);        //WRONG!  

 and the compiler doesn’t complain. However, this code is wrong on several levels. First,  pow()  returns 
a floating point number and the code is trying to jam a 4-byte  float  into a 2-byte  int  bucket. Second, the 
numeric value computed by  pow()  in this example would overflow the maximum value an  int  can hold. 
( INT_MAX  is a  #define ’d constant for the maximum value of an  int . You can use this constant in your code for 
range checking.). Third, the arguments to  pow()  are floating point numbers, so a decimal point is needed to 
ensure the compiler processes the arguments correctly. The call should be this: 

  float val = pow(10000.0, 2.0);  

 The lesson here is that the Arduino C compiler performs some type checking, but some errors can slip 
through the cracks. If a function is returning bogus values, make sure you’re passing data to the function that 
is consistent with its argument list. Also, make sure that the return value matches the variable type you are 
using to hold the return value. 

 You can get more help from the compiler when tracking down bugs of this nature. Go to the File ➤ 
Preferences menu option and check the box that tells the compiler to issue “verbose” messages during 
compilation. These verbose messages often are helpful when tracking down some types of program errors. 
When the verbose mode is turned on, you will also get processing messages (displayed with white lettering) 



CHAPTER 6 ■ FUNCTIONS IN C

123

that simply detail normal compile processes. The list can be quite long and scroll out of view. However, 
compiler warnings are displayed in orange lettering and you can scroll back through the messages and 
read those that are of interest to you. Personally, I find the additional messages distracting, so I leave the 
preferences without using the verbose mode.  

     Function Signatures and Function Prototypes 
 The function type specifier, the function name, and the function’s argument list are collectively called the 
 function signature . The function signature for my leap year function is: 

         int IsLeapYear(int year)        // Function signature  

  If you add a semicolon on the end of the function signature,  

         int IsLeapYear(int year);       // Function prototype... note semicolon at end  

 The function signature becomes a  function prototype . Function prototypes are used by the compiler 
to check to see if you spelled the function name correctly, if you are passing it the correct data types to the 
function, and if you are using any return value correctly. Because this information is used for type checking, 
function prototypes usually appear at the top of the source code file so that the compiler reads them before 
you actually use them. This allows the compiler to place the information about the function in the symbol 
table, thus creating an attribute list for the function that can be used for type checking. 

 ■   Note    The Arduino compiler maintains an internal list of function prototypes for the standard library function 
and creates  ad hoc  prototypes for the functions you write. If your project has two or more source code files, 
you would normally create a header file for those additional source code files. Header files are used to pass 
information to the compiler that it needs to properly process your program. For example, if you added a source 
code file named  MyFunctions.cpp  (it’s a C++ file), you would also create a header file named  MyFunctions.h , 
which would contain the function prototypes (and other information) for all of the functions defined in the 
 MyFunctions.cpp  source code file. Then, at the top of your  *.ino  project file, the first line would be

  #include "MyFunctions.h"  

which tells the compiler to read that header file so it can do function type checking on your new functions. I will 
have more to say about this in Chapter   11    .  

 One more thing: there is no code generated with a function prototype. That is, the actual code for the 
function appears elsewhere, either in a library or later in your code. As such, no actual program memory is 
allocated for a function prototype. This means there is no lvalue for the function prototype in the symbol 
table. Only the function’s attribute list as constructed from the function signature is in the symbol table. 
Because there is no lvalue, function prototypes are data declarations, not data definitions. 

 Finally, if you know a function’s signature or its prototype, you know the information necessary to use 
the function. You also know what type of data is returned from the function. What you don’t know from 
either of these things is how the function is implemented, which is as it should be. What happens inside the 
black box stays inside the black box.   

http://dx.doi.org/10.1007/978-1-4842-0940-0_11


CHAPTER 6 ■ FUNCTIONS IN C

124

     Function Body 
 The  function body  begins with the opening brace ( { ) that follows the closing parenthesis of the argument list 
and extends to the closing brace ( } ) of the function. Stated differently, the function body starts at the point 
where the function signature ends. All of the statements between these two characters comprise the function 
body. Obviously, the statements in the function body determine how the function is implemented. 

 If the function type specifier is anything other than  void , at least one of the statements in the function 
body must contain the keyword  return . For example: 

  int VolumeOfCube(int width, int length, int height)  
  {  
       int volume;  
       volume = width * length * height;  
       return volume;  
  }  

 In this example, the function type specifier is an  int , so the function must have a  return  statement in it. If 
you forgot the statement 

          return volume;  

 the compiler should issue an error message. You can think of the  return  statement as an instruction telling 
the compiler what to put into your backpack. If the function type specifier is  void , there is no need to place 
anything in the backpack. Otherwise, there needs to be a  return  statement telling the compiler what data 
type to put in the backpack and return back to the caller. 

 Note that experienced C programmers tend to make their code as short as possible. As a result, 
programmers often would write the code as 

  int VolumeOfCube(int width, int length, int height)  
  {  
          return width * length * height;  
  }  

 which removes the temporary variable  volume . 
 Unfortunately, the Arduino C compiler lets you get a little lazy about return values. For example, if you wrote 

  int myFunction(int a)  
  {  
          int temp = a;  
  }  

 the compiler should complain that you are not returning a value from the function, even though you used 
the  int  type specifier. Alas, unless you have the verbose compiler messages turned on, the compiler is mute 
about this error. This can be nettlesome if you did something like 

  int number = myFunction(10);  

 because some kind of indeterminate junk is going to be assigned into  number . Debugging this type of 
error can be frustrating because the code looks so simple and you’re getting no debugging hints from 
the compiler. Just keep in mind: when the compiler seems to be executing code that isn’t there, it isn’t. 



CHAPTER 6 ■ FUNCTIONS IN C

125

The compiler is doing exactly what you told it to do. It’s just not being real helpful in telling you what you 
meant to do isn’t what it  is  doing. 

 On a more positive note, if you change the function type specifier from  int  to  void  

  void myFunction(int a)  
  {  
          int temp = a;  
  }  

 and then try to do something silly like 

  int number = myFunction(10);  

 which tries to assign “nothing” (i.e., void) into number, the compiler issues an error message stating 

  void value not ignored as it ought to be  

 which is at least helpful in finding the error. 

     Overloaded Functions 
 Whenever a function shares a common name, but has two or more different signatures, it is called an 
 overloaded function . In most cases, it is the argument list that differs across signatures. (Technically, the C 
programming language does not allow overloaded functions, whereas C++ does. Because the Arduino C 
compiler is built upon the GCC compiler, Arduino C does permit overloaded functions. This is a good thing!) 
Often, two signatures are used when a default value doesn’t solve the task at hand. For example, in Chapter   5    , 
Listing   5-4     uses the  random()  function, passing in lower and upper bound values for the random number: 

  randomNumber = random(MIN, MAX);  

 However, if we look at the documentation for  random(),  we see that we could have used 

  random(201);  

 because the function has an overloaded function signature with a single argument in its argument list. 
 Another example is 

  Serial.print(val);  

 which you have used in other programs. However, if you want to display  val  in hexadecimal instead of 
decimal, you could use: 

  Serial.print(val, HEX);  

 Clearly, the  print()  method for the Serial object is overloaded because the same method name has two 
(actually, more than two) function signatures. 

 Overloaded functions add a degree of consistency (i.e., using the same name) in a programming 
situation where there is a small nuance of difference in what the function needs to perform its task. 
Overloaded functions are not difficult to understand, but you do need to consult the documentation for any 
functions you are not familiar with, simply because they well may be overloaded. If they are overloaded, 
it simply means you have more choices in the way you go about solving a problem. I will have more to say 
about overloaded functions in later chapters.   

http://dx.doi.org/10.1007/978-1-4842-0940-0_5
http://dx.doi.org/10.1007/978-1-4842-0940-0_5#FPar4


CHAPTER 6 ■ FUNCTIONS IN C

126

     What Makes a “Good” Function 
 I’ve already touched on some of the things that are part of a good function definition, but let’s consider those 
conditions in a little more depth. 

     Good Functions Use Task-Oriented Names 
 A good function name is a description of what the function does. Usually, a function is designed to solve 
some particular problem or task. If so, the function name should reflect what the function does. Often the 
function name is action-oriented, such as  GetThis(), DoThat(), SetBit(), ReadIOBit(),  and so forth. Such 
names reflect the nature of the task at hand,  not  how that task is accomplished. 

 As mentioned earlier, function names should reflect  what  is to be done, not  how  it is done. The 
exception is when you are writing a function that specifies the way something must be done (e.g., 
 BubbleSort(), ShellSort(), CreateLinkedList() , etc.) Such method-oriented names are fine if a task requires 
that the problem be solved a specific way. For example, suppose you need to search a 100,000-word 
document for a specific phase. One way is a brute force approach where you just plow through the file 
looking for the phrase. You might name that function  BruteForceSearch() . A more sophisticated algorithm 
uses a Boyer-Moore algorithm, suggesting you name the function  BoyerMooreSearch() . Clearly, method-
named functions require you to suggest the underlying method or algorithm being used. However, more 
often than not, you will be creating task-oriented functions. Using task-oriented function names makes it 
easier for you to change the underlying algorithm without breaking existing code.  

     Good Functions Are Cohesive 
  A cohesive function is a function that is designed to accomplish a single task.  Chances are, if you can’t explain to 
someone what a function does in two sentences or less, the function is too complicated and is not cohesive. In 
such cases, redesign the function and break it into smaller tasks and make each of those smaller tasks a function. 

 I mentioned that students often want to build a Swiss Army knife function—a function that is designed 
to address multiple tasks at once, and, inevitably, doing none of them well. Also, such multiuse functions 
require more control code in them to pick between the options. More code almost always means more time 
writing, testing, and debugging the code. Also, by breaking the tasks down into simpler multiple functions, 
you increase the odds that you can reuse those functions in other programs. 

 How do you know when a function lacks cohesion? First, the two-sentence rule is a good start in 
deciding if the function attempts to do too much. Another tip-off is when you see an argument list with three 
or more arguments. Usually, a single-task function doesn’t need all that much help in terms of data from the 
outside world. Small backpacks are a good thing. When you see a long argument list, you should step back 
and ask yourself if the function is cohesive.  

     Good Functions Avoid Coupling 
  Coupling refers to the need for one function to depend upon the results of another function to perform its task . 
For example, earlier I mentioned a function named  FindListItem()  and suggested: 

  int FindListItem(int list[], int target)  
  {  
          ShellSort(list);                        // Sort the data  
          return FindItem(list, target);          // Find the item  
  }  



CHAPTER 6 ■ FUNCTIONS IN C

127

 This is really not a good function because it has two tasks:

•    Sorting the data  

•   Finding the item in the sorted list    

 It would be better to remove the  ShellSort()  function call out of the  FindListItem()  function, and move 
the  FindItem()  function code into the  FindListItem()  function body. You could then toss the  FindItem()  
function away. The  FindListItem()  is no longer coupled to (or depends upon) the  ShellSort()  function to 
perform its task. The function is also more cohesive now because it no longer is required to perform two 
tasks. True, to have the code behave as before, you would need to have two calls: 

  ShellSort(list);  
  FindListItem(list, target);  

 However, in my mind, this divide-and-conquer approach is a good thing. If I later discover a new 
function is more efficient at sorting the list (e.g.,  SuperfastSort() ), I can replace the  ShellSort()  call with 
 SuperfastSort() . If we had the old form where the sort process is buried within the function, we’re stuck with 
 ShellSort() . This is especially true for function libraries where you may not have access to the source code for 
the library. 

 There are situations where you cannot totally avoid some level of coupling. If your program has to write 
to a data file, you need to open the file first. If you’re reading a sensor, there may be a sequence of tasks that 
must be performed in a specific order for the sensor to do its job. For example, if you need to read a line 
of text from a data file, it is better to have separate  Open(), Read() ,and  Close()  functions than to bury the 
 Open()  and  Close()  functions within a  Read()  function. That way, you can still have a cohesive function with 
minimal coupling.   

     Writing Your Own Functions 
 What is the first step you should do when writing your own functions? The first step should be to determine 
if someone else has already written the function. A good place to start your search is    http://arduino.
cc/it/Reference/Librarie      and    http://playground.arduino.cc     . Reading about existing libraries may 
even provide new insight into solving old problems. A Google search may also be a productive area of 
investigation. If you purchase a shield or some other hardware-specific board, you should also see if their 
web site hosts source code from their customers. Many do and some of the code is very good. Lesson 
number one is:  Don’t write code if you don’t have to . 

 Assuming you can’t find an existing function that fulfills your needs, then it is time to consider 
designing your own function. For this example, you are going to design and write a function that determines 
if a given year is a leap year or not. For the existing libraries I could find, their leap year function returns a 
Boolean value of  true  if it is a leap year, or  false  if it is not a leap year. Although I could make do with those 
existing functions, it doesn’t behave the way I want to use it. (We’ll set the function design goals in a few 
moments.) So, let’s make a small trip to the drawing board. 

     Function Design Considerations 
 Clearly, you need to design the function to accomplish a single (cohesive) task. Figure  6-1  provides a useful 
roadmap for starting our design. Let’s examine the pieces of the function signature presented in Figure  6-1  
from a design perspective. 

http://arduino.cc/it/Reference/Librarie
http://arduino.cc/it/Reference/Librarie
http://playground.arduino.cc/


CHAPTER 6 ■ FUNCTIONS IN C

128

   Function Type Specifier 
 First, what data type do we want the function to return? While the leap year function for most language 
libraries (C, Java, C++, Visual Basic, C#) return a Boolean, we want ours to return an  int . Why an  int  data 
type for the return value instead of a Boolean? The reason is because the most common use for a leap year 
calculation is to determine how many days there are in February for a given year. Perhaps the day makes a 
difference in a billing cycle, interest payment, or some other calculation. Whatever the reason, if you use a 
“standard” leap year calculation, you need code that looks something like the following: 

  // some SDC code... at least for my purposes  
  int daysInFeb;  
  if (IsLeapYear(year) == true)  
          daysInFeb = 29;  
  else  
          daysInFeb = 28;  

 This code is SDC for the task we have specified, so we might refactor it by initializing  daysInFeb  and 
remove the  else  clause: 

  // still some SDC code...  
  int daysInFeb = 28;  
  if (IsLeapYear(year) == true)  
     daysInFeb = 29;  

 The problem is that we still need the  if  statement to set the proper number of days in February. 
However, if you write the function to return 1 (as an  int ) if it is a leap year or 0 otherwise, then you can write: 

  // some PGC code...  
  int daysInFeb = 28 + IsLeapYear(year);  

 Given what we want the function to accomplish, this is  Pretty Good Code  (PGC) and is a good design for 
our solution. As a general rule, less code is good code as long as its intent remains clear and it accomplishes 
the task at hand.  

   Showoff Code 
 I just saw the following C statement online: 

  i=(i<<3) + (i<<1) + (*string - '0');  

 Essentially, what this does is take an ASCII digit code and multiply it by 10. While this is clever code, I 
would fire the guy who wrote it if he worked for me because it’s “show-off code.” Writing code like this is difficult 
for other programmers to decipher and just isn’t worth the hassle it costs to suport it. If you are writing code 
for yourself and there’s some huge performance gain by bit-shifting the data, perhaps then it’s okay. However, 
chances are such code is really not necessary. Indeed, the compiler may well optimize the difference away.   

     Function Name 
 What’s in a name? A lot! We’ve already stated that we want task-oriented names, not method-oriented 
names. We’ve already settled on a name.  IsLeapYear()  suggests that the function is going to address the task 
of finding out if a given year is a leap year. Will this cause a function name collision (i.e., two functions with 



CHAPTER 6 ■ FUNCTIONS IN C

129

the same name) in your code? After all, this name is used in some other libraries and the function signature 
is the same. Even if you do happen to include a library with the same function name, the compiler gives 
precedence to the function whose source code is being compiled. Because you are supplying the source 
code for the function, name collision is not a problem. Also, our function type specifier is an  int , whereas the 
standard library is a  boolean,  which means the signatures are different.  

     Argument List 
 Our function does need data from the “outside world” to accomplish its task. Specifically, the backpack 
needs to have an  int  data type that specifies the year stuffed into it before we call the function. Again, 
visualizing a function as a black box with a single entry and exit point is a good mental picture for the way a 
function should work. That is, after you write this function, handing the function to another programmer for 
use of your function should prompt only three questions from them:

•    What task does this function perform?  

•   What data do I need to send to the function?  

•   What data do I get back from it?    

 If you’ve done your design work well, the function name answers the first question, the argument 
list answers the second question, and the function type specifier answers the third question. That is, 
the function signature fills the bill. When the day is done, a programmer using your code could care less 
how you write the code inside the function—as long as it accomplishes the task at hand with reasonable 
efficiency.  

     Function Body 
 The function body begins with the opening brace, followed by the statements that are necessary to 
accomplish the task at hand, followed by a closing brace. Because our type specifier returns an  int , you 
immediately know that one of the statements must use the  return  keyword to send an  int  value back from the 
function. 

 If you think about it, the function argument list corresponds to the Input Step of the Five Program 
Steps you learned in Chapter   2    . The function body reflects the Process Step since it contains the statements 
necessary to solve the task. What you need now is an algorithm that tells you how to determine if a year is a 
leap year. 

 You can Google “leap year” and find the algorithm for the leap year calculation. An  algorithm  is simply 
a step-by-step set of instructions for solving a problem. The leap year algorithm states:  If the year can be 
evenly divided by 4, but not by 100, it is a leap year. The exception occurs if the year is evenly divisible by 400, it 
is a leap year.  

 Although you could write the code using a couple of nested  if  statements, C provides a less messy way of 
writing the code. To implement this algorithm, let’s take a small detour and learn about the logical operators 
C provides to you and how you can use them.   

     Logical Operators 
 Logical operators allow you to combine logical expressions. The logical operators are presented in 
Table  6-1 .  

http://dx.doi.org/10.1007/978-1-4842-0940-0_2


CHAPTER 6 ■ FUNCTIONS IN C

130

 The best way to illustrate the use of the logical operators is to first consider how they relate to a 
concept known as a truth table.  Truth tables  show all of the possible outcomes of a logical test using two 
expressions. 

     Logical AND Operator (&&) 
 The logical AND operator is formed by placing two  &  characters back-to-back with no space between 
them ( && ). Consider the truth table for the logical AND operator, as shown in Table  6-2 .  

    Table 6-1.    Logical Operators   

 Operator  Meaning  Example 

 &&  Logical AND   X  &&  Y  

  ||   Logical OR   X || Y  

  !   Logical NOT   !X  

       Table 6-2.    Logical AND (&&) Truth Table   

 Expression1  Expression2  Expression1 && Expression2 

 TRUE  TRUE  TRUE 

 TRUE  FALSE  FALSE 

 FALSE  TRUE  FALSE 

 FALSE  FALSE  FALSE 

 Suppose you have variables  k  and  j , and  k  equals 2 and  j  equals 3, then the statement 

  if (k == 2 && j == 3)  

 finds  expression1  ( k  == 2) is  true  and  expression2  ( j  == 3) is also  true . Looking in Table  6-2 , because both 
expressions within the  if  statement are true, the logical AND of the two expression is  true . However, using the 
same values for  k  and  j , the following statement 

  if (k == 9 && j == 3)  

 results in  expression1  being  false  ( k  is not equal to 9), which corresponds to the third row in Table  6-2  (i.e., 
False-True for the expressions) yielding a  false  condition for controlling the outcome of the  if  statement. As 
you can see from Table  6-2 , a logical AND operation only yields a logic  true  result when both expressions are 
 true . All other combinations are logic  false . 

 In complex expressions, you may have multiple logical operators being used. (You will write one later 
in this chapter.) If that’s the case, you also need to know where the logical operators fit in with respect to 
operator precedence. Table   4-2     from Chapter   4     (the page number of which you wrote on the back cover of this 
book, right?) shows that the logical AND and OR operators have precedence levels of 10 and 11 in Table   4-2    , 
respectively. As you can see from Table  6-1 , the NOT operator is a unary operator and from Table   4-2     you can see 
it has a relatively high precedence level of 2. You can use the precedence table to resolve complex statements.  

http://dx.doi.org/10.1007/978-1-4842-0940-0_4#Tab2
http://dx.doi.org/10.1007/978-1-4842-0940-0_4
http://dx.doi.org/10.1007/978-1-4842-0940-0_4#Tab2
http://dx.doi.org/10.1007/978-1-4842-0940-0_4#Tab2


CHAPTER 6 ■ FUNCTIONS IN C

131

 As you can see in Table  6-4 , all the NOT operator does is invert, or toggle, the logic of the expression. For 
example, suppose  k  equals 2 again. Then 

  if (! k == 2)  

   Table 6-3.    Logical OR (||)   

 Expression1  Expression2  Expression1 || Expression2 

 TRUE  TRUE  TRUE 

 TRUE  FALSE  TRUE 

 FALSE  TRUE  TRUE 

 FALSE  FALSE  FALSE 

     Table 6-4.    Logical NOT (!)   

 Expression1  ! Expression1 

 TRUE  FALSE 

 FALSE  TRUE 

 Once again, suppose you have variables  k  and  j , and  k  equals 2 and  j  equals 3, then the OR expression in 
the following 

  if (k == 2 || j == 3)  

 is logic  true . However, it is also  true  that 

  if (k == 9 || j == 3)  

 results in logic  true  for the OR expression when it was logic  false  for the AND operator. A logic OR is only 
 false  when  both  expressions are  false . As long as at least one expression is  true , the outcome is  true . In fact, if 
the first evaluated expression in an OR statement is logic  true , the code will not even bother evaluating the 
next part of the OR statement. This is called  short-circuit expression evaluation  and allows the compiler to 
perform a small code optimization.  

     Logical NOT (!) 
 The logical NOT operator is the exclamation point ( ! ). Because the logical NOT operator is a unary operator, 
its truth table is a little simpler, as shown in Table  6-4 .  

     Logical OR (||) 
 The logical OR operator is formed by placing two vertical bars—also called  pipe  ( | ) characters—back-to-
back with no space between them ( || ). The truth table for the logical OR operator is shown in Table  6-3 .  



CHAPTER 6 ■ FUNCTIONS IN C

132

 is logic  false . Because  expression1  is  true  ( k  does equal 2), Table  6-4  shows that the result of the logical NOT 
operator is logic  false . I surround the expression in a NOT operation with parentheses, as in 

  if (! (k == 2) )  

 because the test for equality operator ( == ) has a lower precedence than the NOT operator. Also, the 
parentheses makes it more clear what the intent of the expression is.   

     Writing Your Own Function 
 Now that you understand the logical operators, let’s write the body of our function. Repeating our leap year 
algorithm …  if the year can be evenly divided by 4, but not by 100, it is a leap year. The exception occurs if the 
year is evenly divisible by 400, it is a leap year.  

 Let’s break this down, part by part. 
 First, the statement: “If the year can be evenly divided by 4” means that dividing the year by 4 should not 

produce a remainder after division. This is precisely what the modulo operator ( % ) is intended for: it returns 
the remainder after integer division. You can write this element of the algorithm as the logical expression: 

  (year % 4 == 0)  

 Second, the statement: “but not by 100” is actually saying: “but the year is not evenly divisible by 100.” 
Again, the modulo operator ( % ) is designed for this type of operation, so you can write the expression as: 

  (year % 100 != 0)  

 Taken together, if both of these expressions are  true , the year is a leap year. Therefore, you can write the 
two expressions as: 

  (year % 4 == 0) && (year % 100 != 0)  

 If these two expressions are  true , it is a leap year. This complex expression corresponds to the first row in 
Table  6-2 . You are not done, however, because of the “exception” stated in the algorithm. 

 The third expression is: “The exception occurs if the year is evenly divisible by 400, it is a leap year.” You 
can write this expression as: 

  (year % 400 == 0)  

 The algorithm states that, regardless of the other two expressions, if this expression is  true , it is a leap 
year. Therefore, if the complex expression 

  (year % 4 == 0) && (year % 100 != 0)  

 is  true , or if the simple expression 

  (year % 400 == 0)  

 is  true , the year is a leap year. Clearly, this is a situation where the OR operator is needed for the exception. 



CHAPTER 6 ■ FUNCTIONS IN C

133

 Now that you have broken the algorithm down into its component expressions, you can write the test on 
 year  to determine if the year is a leap year. The complete  if  test becomes: 

  if (year % 4 == 0 && year % 100 != 0 || year % 400 == 0) {  
          return 1;        // It is a leap year  
  } else {  
          return 0;        // not a leap year  
  }  

 If you read the preceding  if  expression, you literally end up restating the leap year algorithm. Now let’s 
take all the pieces/parts and fit them into a function. 

     The IsLeapYear() Function and Coding Style 
 No doubt you can take things from here and finish writing the leap year function. However, let me suggest 
that the coding style that you use does make a difference. Although there are no coding style “rules” for 
functions, the function style shown in Listing  6-1  has served me well over the years. 

   Listing 6-1. The IsLeapYear() Function 

  /*****  
      Purpose: Determine if a given year is a leap year  

      Parameters:  
        int year          The year to test  

      Return value:  
        int               1 if the year is a leap year, 0 otherwise  
  *****/  
  int IsLeapYear(int year)  
  {  
          if (year % 4 == 0 && year % 100 != 0 || year % 400 == 0) {  
                  return 1;        // It is a leap year  
          } else {  
                  return 0;        // not a leap year  
          }  
  }   

 This style starts the function definition with the documentation for the function using a multiline 
opening comment sequence of characters ( /* ) followed by four more asterisks. The next line defines the task 
that this particular function is supposed to address. The next statement (or statements if the function has 
more parameters) tells the nature of the data that is being passed into the function. If you enter the black box 
with an empty backpack, you should still have a parameters section. In that case, however, you just specify 
 void  for the parameter list. 

   Arguments vs. Parameters 
 Note that I specifically use the term parameters here, but arguments elsewhere. When you call the 
 IsLeapYear()  function, you determine which variable has its value sent to the function. You might, for 
example, have an array of integer values, each of which represents a year. You may decide that  year[3]  has 
its value passed into the  IsLeapYear()  function. That is, you get to decide which argument gets passed (e.g., 
 IsLeapYear(year[3]) ) to the function. 



CHAPTER 6 ■ FUNCTIONS IN C

134

 Now look at things from the  IsLeapYear()  perspective. It has no choice about the data: the value to be 
used is “dictated” to it … that value is handed to the function (in a backpack shoved through the front door!) 
and it has no choice in the matter. Therefore, think of an argument as a choice that the programmer makes 
as to the value that gets sent to the function. Think of a parameter as a value that is forced into the code … 
there is no choice in the matter from the function’s point of view. 

 After the parameter list comes the Return value element of the function documentation. Clearly, the 
value returned from the function is dictated by the function type specifier. However, the documentation 
should state the interpretation of that value. In our case, a value of 1 means the year passed to the function is 
a leap year, and 0 means the year is not a leap year. 

 Following the return value comes a series of four asterisks and a closing multiline comment character pair, 
 *****/ . This sequence is used to delineate the end of the function documentation comment. The next line is 
the beginning of the function definition and starts with the function type specifier ( int ), and is followed by the 
function signature ( IsLeapYear(int year) ). The next line is the opening brace of the function body, followed by 
the statement(s) that comprise the function body, followed by the closing brace of the function body.   

     Why Use a Specific Function Style? 
 Once again, C could care less about the coding style you use, so why use this style? For almost 20 years 
I owned a software company that produced C programming tools and I insisted that every function a 
programmer wrote followed this style …  exactly . If I found code that didn’t use this style, that programmer 
had to buy lunch on Friday for all the other programmers. It didn’t take long for new programmers to learn 
the coding style rules. 

 The reason for following these coding style rules was because it lent itself to creating a self-
documenting programmer’s manual. Early in the company’s history, I wrote a program that would search 
through all the C source code files looking for the  /*****  character sequence. Once that sequence was 
found, I knew that everything from that point until the program read the  *****/  character sequence was 
the documentation comment for that function. The program then copied the complete comment, plus 
the line following the ending comment sequence (i.e., the function signature), into a simple text file. The 
program also wrote the source file name (e.g.,  date.c ) and the line number where the function started in 
the source file. 

 After all the source files were read, the program sorted the functions by name and printed out the text 
file. The resulting printout then contained a complete list of all the functions that were available in the 
function library arranged in alphabetical order, including the source file name and line number. 

 Had a consistent style not been used by the programmers, this type of manual would be much more 
difficult to produce and the process would have been less automated. Also, using a consistent style makes it 
easier for programmers to read each other’s code. Even if you are just writing code for yourself, a consistent 
style will still make it easier for you to read your own code, especially six months down the road. For those of 
us who can’t remember what they had for breakfast, this programming consistency is a real plus. Whatever 
style you end up using, make sure you use it consistently. It will make life easier for you in the long run.   

     Leap Year Calculation Program 
 The code in Listing  6-2  presents a complete program designed to take input from the user and determine if 
the year entered is a leap year or not. The  setup()  function simply establishes the communications rate for 
the  Serial  object and initializes the serial buffer. You can think of the serial buffer as a small (64-byte) section 
of memory devoted to storing data from the serial port. 

 In the  loop()  function, the call to the  Serial.available()  function returns the number of data bytes 
that are currently in the serial buffer. If any data is available, several working variables are defined and the 
program calls  ReadLine() . 



CHAPTER 6 ■ FUNCTIONS IN C

135

     Listing 6-2. Leap Year Program 

  /**  
    Program: find out if the user typed in a leap year. The code assumes  
      the user is not an idiot and only types in numbers that are a valid  
      year.  

    Author: Dr. Purdum, Nov. 17, 2014  
  **/  

  #define MAXCHARS 10  

  void setup()  
  {  
    Serial.begin(9600);  
  }  

  void loop()  
  {  
    if (Serial.available() > 0) {  
      int bufferCount;  
      int year;  
      char myData[MAXCHARS + 1];         // Save room for null  

      bufferCount = ReadLine(myData);  
      year = atoi(myData);               // Convert to int  
      Serial.print("Year: ");  
      Serial.print(year);  
      Serial.print(" is ");  
      if (IsLeapYear(year) == 0) {  
        Serial.print("not ");  
      }  
      Serial.println("a leap year");  
    }  
  }  

  /*****  
    Purpose: Determine if a given year is a leap year  

    Parameters:  
      int yr              The year to test  

    Return value:  
      int                 1 if the year is a leap year, 0 otherwise  
  *****/  
  int IsLeapYear(int yr)  
  {  
    if (yr % 4 == 0 && yr % 100 != 0 || yr % 400 == 0) {  
      return 1;   // It is a leap year  
    } else {  



CHAPTER 6 ■ FUNCTIONS IN C

136

      return 0;   // not a leap year  
    }  
  }  

  /*****  
    Purpose: Read data from serial port until a newline character is read ('\n')  

    Parameters:  
      char str[]   character array that will be treated as a null-terminated string  
    Return value:  
      int          the number of characters read for the string  

    CAUTION:  This method will sit here forever if no input is read from the serial port 
and no newline character is entered.  
  ****/  
  int ReadLine(char str[])  
  {  

    char c;  
    int index = 0;  

    while (true) {  
      if (Serial.available() > 0) {  
        index = Serial.readBytesUntil('\n', str,  MAXCHARS);  
        str[index] = '\0';  // null termination character  
        break;  
      }  
    }  
    return index;  
  }   

 The code for the  ReadLine()  appears near the bottom of Listing  6-2 . Although the  ReadLine()  code has 
some SDC elements in it, it’s good enough for our purposes here. The code uses an infinite  while  loop to wait for 
a character to appear in the serial buffer. When that happens, the call to  Serial.readBytesUntil()  is made. (Notice 
how library functions use a lowercase letter for the start of the method name, while my functions all start with 
an uppercase letter. Most Arduino libraries use the objected-oriented syntax of an uppercase class name (e.g., 
 Serial ) followed by a lowercase method name (e.g.,  read() ) with a dot operator separating the two names.) 

 The first argument in the  readBytesUntil()  method is a  newline character  ( '\n' ), which is C’s 
abbreviation for pressing the Enter key). The purpose of the newline character is to terminate the input 
stream to the  Serial  object. The second argument dictates where the  Serial  object is to place the characters 
that are read from the  Serial  monitor. The third argument sets the limit to the number of characters that 
are to be read. This limit ensures that we don’t “overflow” the character string where we are storing the 
characters. In other words, the three arguments say: “Read characters from the  Serial  object into  str[]  until 
you read a newline character, up to a max of MAXCHARS.” Note that the drop-down box at the bottom of 
Figure  6-2  has the Newline option selected. This means that when you click the Send button (or press Enter), 
the newline character is appended to whatever has been typed in the input text box. This ensures that the 
newline character is present for  readBytesUntil()  to terminate reading characters.  

 The  readBytesUntil()  method returns the number of characters read, which we assign into  index . When 
the newline character is read, that character is  not  placed into the character array. Instead, the newline 
character is replaced with a null character ( '\0' ) and placed into the array using  index  to determine where 
to place the null. Therefore, the character array can now be treated as a string variable by the rest of the 
program. 



CHAPTER 6 ■ FUNCTIONS IN C

137

 To supply the year to be tested, place the cursor in the text box at the top of the serial monitor dialog box 
and type in the year to test. Click the Send button (or press Enter) to transfer the data to the serial buffer on the 
 m c board. The call to  IsLeapYear()  then causes the appropriate message to be sent back to the PC, as shown in 
Figure  6-2 . (Make sure you see the Newline choice in the drop-down list box at the bottom of the monitor.) 

 There are a few things going on in the program that I will defer until the next chapter. However, it is 
important that you understand the mechanism the function uses to pass data into and back from a function.  

     Passing Data into and Back from a Function 
 Understanding how data is passed back and forth between a function and the main program is important. 
Up to this point, we have been using our backpack analogy to explain how data is passed to and returned 
from a function. What follows is a simplified description of how things work when functions have arguments 
being passed into them and values being passed back from them. While I’ve taken a few liberties, the 
concepts are true. 

 Consider the following line from Listing  6-2 . 

  if (IsLeapYear(year)) {  

 In this instance, the function call to  IsLeapYear()  becomes  expression1  for the  if  statement. Let’s see how 
this works. 

  Figure 6-2.    Using the serial monitor       

 Upon return from  ReadLine() , the code calls the standard library routine  atoi()  (ASCII to integer) to 
convert the contents of the string variable to an integer variable named  year . The call to  IsLeapYear()  then 
determines whether the year is a leap year or not. 

 Figure  6-2  shows what the Serial monitor looks like as the program runs. (You can activate the serial 
monitor using the Tools ➤  Serial  Monitor menu sequence, or by using the Ctrl+Shift+M key sequence, 
remember?) 

 



CHAPTER 6 ■ FUNCTIONS IN C

138

TOS

BOS

4

0

0

0

0

  Figure 6-4.     The program stack with a memory address on the stack        

(Empty)
TOS BOS

  Figure 6-3.    The program stack when empty       

     Pass-by-Value 
 The first thing to notice is that the variable name  year  is passed to the  IsLeapYear()  function. This is an 
example of what is known as  pass-by-value . When data is passed to a function using the pass-by-value 
mechanism, it is the rvalue of the variable that is sent to the function, not the variable itself. In other words, 
a temporary copy of the value of  year  (i.e., its rvalue) is copied and used in the call to  IsLeapYear() . For 
purposes of discussion, let’s assume that  year  equals 2012. 

 The mechanism for getting the value 2012 to the code for the  IsLeapYear()  function is called the stack. 
The  stack  is a small section of memory that is organized like a plate dispenser at a salad bar. If the stack is 
empty, it looks like Figure  6-3 , where  TOS  stands for  Top Of Stack  and  BOS  stands for  Bottom Of Stack . If the 
stack is empty, it’s like a salad bar with no salad plates and looks like Figure  6-3 . (I’ve taken some liberties 
with the ordering of stack arguments, but the concepts are viable.)  

 Note that the TOS and BOS are equal … they have the same address in memory because the stack is 
empty. 

 Now suppose we push a memory address onto the stack. Let’s further assume all memory addresses for 
the  m c board are 4-byte values. Suppose we push a memory address (40,000) onto the stack; the stack now 
looks like Figure  6-4 . Pushing the memory address onto the stack causes the BOS to sink downward by 4 
bytes, as illustrated in Figure  6-4 . That is, the BOS sinks down four places to make way for the 4-byte memory 
address (40,000), while the TOS remains constant. Let’s further assume that the memory address 40,000 
represents the memory address that holds the next program instruction that is to be executed after returning 
from the  IsLeapYear()  function call. (The ATMega2560, for example, has 256,000 bytes of memory.)  

 So, how do we get the copy of the value of  year  to the function? As you might guess, we push a copy of 
 year ’s rvalue onto the stack. Because  year  is an  int , the copy of that value (2012) requires two bytes of storage. 
This changes our picture of the stack to that shown in Figure  6-5 . (The dividing line is a little heavier to show 
the delineation between the two data items. )   

 

 



CHAPTER 6 ■ FUNCTIONS IN C

139

 When the stack reaches this state, the program transfers control to the  IsLeapYear()  function code. (The 
compiler knows exactly where to jump in memory to start executing the function code. That is,  IsLeapYear()  
has an lvalue just like every other data object in the program.) You can think of the stack as the backpack that 
shows up with data from the outside world. 

 The signature for  IsLeapYear()  tells the function code how the data from the outside world is packed 
into the backpack. That is, 

  int IsLeapYear(int yr)  

 causes the code to first look for the  int  data that is stored on the stack. It knows an  int  is on the stack because 
the parameter list ( int yr ) tells it what has been placed on the stack. Because each  int  requires 2 bytes of storage, 
the function code goes to the memory address held at the TOS, grabs 2 bytes of data (i.e., 2012) and copies 
it into the rvalue for the temporary variable  yr . After the assignment of 2012 into  yr  takes place, the TOS is 
adjusted to reflect that two bytes that have been popped off the stack. Like the salad bar plates, the TOS pops up 
to reflect that two plates that have been removed. This means the stack once again looks like Figure  6-4 . 

 Now the function’s statement body code is executed. Because 2012 is a leap year, the outcome of the 
 if  statement is that the function must return the value 1 to the caller. To do that, the code pops off the next 
4 bytes from the stack, which is the return address where the program is to resume execution after the call 
to  IsLeapYear()  is completed (i.e., memory address 40,000). That memory address is popped off into the 
program instruction pointer. You can think of the  program instruction pointer  as a program director that 
tells the program where to find the instruction for the next program statement. Once 40,000 is popped off 
into the instruction pointer, the code places the 2-byte return value of 1 on the stack. Now the stack looks 
like Figure  6-6 .  

0

1

TOS

BOS

  Figure 6-6.    The stack after the return value is pushed onto the stack       

4

12

20

0

0

0

0

TOS

BOS

  Figure 6-5.    The program stack after pushing on the value of year       

 Because the year 2012 is a leap year, the value 1 is pushed onto the stack. The function’s type specifier 
tells us that the return value is an  int , so 2 bytes of stack space are required. In other words, the backpack 
now holds the value 1 inside of it stored as an  int . 

 

 



CHAPTER 6 ■ FUNCTIONS IN C

140

 Because the instruction pointer holds the memory location of where the next program instruction 
resides, the program branches back to the statement: 

  if (IsLeapYear(year)) {  

 However, because the code is now executing the instruction  after  the call to  IsLeapYear() , the statement 
appears as though it is written as: 

  if (1) {  

 The reason the code appears this way is because the call to  IsLeapYear()  has been completed and 
the return value (i.e., 1) has been determined by the function’s statement block code. The  IsLeapYear()  
function’s type specifier tells us that an  int  is sitting on the stack (i.e., is in the backpack). That is, the 
contents of the backpack has been popped off the stack as an  int  and becomes  expression1  for the  if  
statement. Because a non-zero value is interpreted as logic  true , the program sends a message back to the 
PC over the serial link and informs the user that 2012 is a leap year. 

 While all of this pushing and popping data onto and off the stack may seem like an H-bomb to kill an 
ant, it is important that you understand how data is passed to and returned back from a function call. It is 
also important to note that it is a  copy  of  year ’s rvalue in the  loop()  function that is sent to  IsLeapYear(), not  
its lvalue .  This is what is meant by pass-by-value. Because  IsLeapYear()  has no clue where  year  is stored in 
memory, there is no way that  IsLeapYear()  can change the rvalue of  year  itself.  Pass-by-value means that only 
the rvalue of an argument is sent to a function,   not its lvalue  . And as long as the lvalue remains unknown to 
IsLeapYear(), there is no way that the function can accidentally change the value of year back in loop().  Pass-
by-value is a mechanism (i.e., encapsulation) that attempts to protect the original data from contamination 
by outside agents.   

     Summary 
 This chapter discussed many different aspects of designing, writing, and using functions in your programs. 
Functions are important because they are the building blocks of all C programs. By following the design and 
construction techniques discussed in this chapter, subsequent program development should become easier 
as you gain experience and reuse functions from previous projects. When it comes to writing functions in 
C, investing a little design time now can pay huge benefits down the road. Again, take your time and let the 
information in this chapter sink in well. Life gets easier if you do. 

 EXERCISES

     1.    What is a function? 

 Answer: A function is a piece of code that is designed to perform a single task.  

    2.     If you had to guess, what is the most common mistake beginning programmers 
make when writing a C function? 

 Answer: Beginning C programmers try to make the function a Swiss Army knife. That is, 
they try to make the function do more than a single task. The result is a function that is far 
too complex and one that is less likely to be reusable in other programs.  



CHAPTER 6 ■ FUNCTIONS IN C

141

    3.    What is a function signature? 

 Answer: A function signature is everything from the function type specifier through the 
closing parenthesis. Therefore, the function signature includes the function type specifier, 
the function name, and its parameter list.  

    4.    What does function overloading mean? 

 Answer: Function overloading occurs when two functions share the same name but have 
different signatures. For example,  Serial.write(name)  displays the content of variable  name  
on the output device.  Serial.write(name, 4) , however, only displays the first four characters 
of  name . Both flavors share the same function name, but have different signatures. It is the 
different signatures that allow the compiler to figure out which flavor of the function to use.  

    5.    What is a function type specifier? 

 Answer: A function type specifier appears immediately in front of a function signature and 
specifies the type of data that is returned from the function.  

    6.    Can a function return more than one value? 

 Answer: No.  

    7.    Name three things you should strive for when writing your own functions. 

 Answer: First, select a name that tells what the function does, not how you do it. A function 
is a black box with front and back doors and no windows. The user has no reason to peek 
inside and see how you are solving the task. Second, the function should be cohesive. 
It should be designed to solve one task and do it well. No Swiss Army knives. Finally, 
functions should stand alone. That is, as much as possible, they should not rely on the 
results of some other function(s). The function should not be coupled to some other 
function.  

    8.    Explain cohesion and coupling as they apply to functions. 

 Answer: Cohesion refers to a clear statement of a function's task. The description of a 
cohesive function should be possible in a sentence or two. Coupling refers the need of one 
function to use the results of another function. If two function are coupled, that means the 
results of one function depends upon another function. Ideally, there should be no coupling 
between functions.          



143© Jack Purdum 2015 
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming 
for the Arduino, DOI 10.1007/978-1-4842-0940-0_7

    CHAPTER 7   

 Storage Classes and Scope           

 This chapter examines the various ways that data are made available to your programs by examining how 
and where that data is stored. The concepts presented in this chapter are important because inadvertent 
access to a program’s data is a frequent source of program bugs. As a general rule, you want to restrict the 
access to a piece of data as much as possible. That way, inadvertent changes to the data are less likely, 
resulting in programs that have fewer bugs. 

     Hiding Your Program Data 
 What’s the big deal about hiding data in a program? After all, if you hide the data “completely,” nothing could 
ever change the data and the state of the program would never change, rendering the program pretty much 
useless. On the other hand, giving free access to the data by every element in the program makes it very 
difficult to determine who changed what. As a result, when a bogus value for a variable shows up, you don’t 
know where to start looking or who to blame for the bogus value. That is, debugging a program becomes 
more difficult. Therefore, the issue becomes one of balance: you restrict access to the data as much as 
possible while still letting those program elements that need access to the data have that access. 

 The process of restricting access to data is called  encapsulation . Simply stated,  encapsulation means 
restricting the access to a data item.  You encapsulate the data in your program for the same reason medieval 
kings kept their daughters in the castle tower … to keep people from messing around with them. 

 Given that encapsulation is desirable, what are your options for restricting access to the data? 
Surprisingly, there are quite a few options available to you. Most of these options are based upon the concept 
of scope. The  scope of a data object refers to its visibility and lifetime in a program . The understanding of 
scope becomes clear when discussed by example.  

     The Three Scope Levels 
 There are three levels of scope available in a C program. The first, and “loosest,” most generous scope level, is 
global scope. A data item defined with  global scope is accessible from the point of definition of the data item to 
the end of the file in which it is defined . Data items with global scope are the least virtuous types of data since 
anyone in the source code file can have his way with them. 

 The second type of scope is function block scope. A data item with  function block scope  has its scope 
extend from the point of definition of the data item to the closing brace of the function block in which it is 
defined. Because function block data hides itself from all other parts of the program, other than the function 
where it lives, it is considered reasonably virtuous. 



CHAPTER 7 ■ STORAGE CLASSES AND SCOPE

144

 The third type of scope is  statement block scope . A data item with  statement block scope extends from 
the point of definition of the data item to the closing brace of the statement block in which it is defined.  
Because its scope is restricted to a single statement block, its virtuosity is considered to be two steps 
short of sainthood. 

 Let’s consider each of these three scope levels in detail, starting with the most restrictive. 

     Statement Block Scope 
 The most restrictive (virtuous?) level of scope is the statement block scope level. Consider the following code 
fragment: 

  if (x < MAXVAL) {                // start of if statement block  
          int temp;                // temp's scope starts after this line  
          temp = x * 100;  
  }                                // temp goes out of scope here  

 Note how the variable named  temp  is defined within the  if  statement block. From the program’s point 
of view,  temp  comes into existence the instant it becomes defined. That is,  temp  begins its existence when 
the semicolon of the  int temp;  statement is read. The next statement simply multiplies whatever  x  is by 100 
and shoves its rvalue into  temp . So far, nothing is done with the result stored in  temp . When the closing 
brace of the  if  statement block is reached,  temp  “goes out of scope”… it dies and is no longer available to the 
program. 

 Let’s write a complete program so we can see how statement block scope works. Consider Listing  7-1 . 

      Listing 7-1. Statement Block Scope Program 

  /**  
    Program: Demonstrate the concept of statement block scope  

    Author: Dr. Purdum, Sept. 19, 2014  
  **/  
  #define MAXVAL 1000  

  int k = 0;  

  void setup()  
  {  
    int x = 5;  
    Serial.begin(9600);  

    if (x < MAXVAL) {  
     int temp;  
     temp = x * 100;  
    }  
    Serial.print("The value of temp is: ");  
    Serial.println(temp);  
  }  

  void loop()  
  {  
  }   



CHAPTER 7 ■ STORAGE CLASSES AND SCOPE

145

 If you try to compile and run this code, the compiler issues the following error message: 

  StatementBlockScopeProgram.ino: In function 'void setup()':  
  StatementBlockScopeProgram.ino:21: error: 'temp' was not  
  declared in this scope  

 So, what’s the problem? There are two problems, actually. As the error message points out, line 21 is the 
offending line, and refers to the statement: 

  Serial.print(temp);  

 The error message tells you that  temp  is “not declared in this scope.” Stated differently,  temp  is “out of 
scope.” What does that mean? 

   What Does Out of Scope Mean? 
 The problem is that you have defined  temp  to have statement block scope. Statement block scope means 
that the data item exists from the point of its definition to the end of the statement block in which it is 
defined. This means that temp “lives” or is “usable” from the point of its definition to the closing brace of the 
 if  statement block. Once the closing brace of the  if  statement is reached,  temp  is removed from the symbol 
table:  temp  is dead and no longer lives … it is “out of scope.” Because it is out of scope, it no longer has an 
lvalue in the symbol table, so you can no longer access or use it. Listing  7-2  shows what the statement block 
scope for temp looks like. 

      Listing 7-2. Statement Block Scope for Temp 

  void setup()  
  {  
    int x = 5;  

    Serial.begin(9600);  

    if (x < MAXVAL) {  
     int temp;  // Scope for temp starts here  
     temp = x * 100;  
    }           // ...and temp scope ends here.  
    Serial.print("The value of temp is: ");  
    Serial.println(temp);  
  }   

 In Listing  7-2 , the shaded area defines the statement block scope for variable  temp  and extends 
from the end of the statement that defines  temp  to the closing brace of the  if  statement block. Variable 
 temp  may be used anywhere within the shaded area because it is “in scope.” Anywhere outside that 
shaded area, however, variable  temp  doesn’t even exist. Outside the shared area in Listing  7-2 , variable 
 temp  is no longer in the symbol table … it is out of scope … it is invisible … it is dead. As such, trying to 
use  temp  several lines after it has gone out of scope must draw an error message from the compiler … 
which it did. 



CHAPTER 7 ■ STORAGE CLASSES AND SCOPE

146

 The second problem with the error message is that it assumes that the terms define and declare 
are synonymous. They are not! You will see more evidence that they are different terms later in this 
chapter.   

     Why Use Statement Block Scope? 
 Given that variable  temp  is in scope for such a short time, why use it? 

 First, in a code example that is as trivial as this one, there is no reason to use statement block scope. 
However, if the statement block is more complex, statement block scope does afford protection from 
the programmer trying to use that variable outside of its statement block. That is, the programmer is 
encapsulating and protecting the data at its most restrictive level. 

 Second, once a variable goes out of scope, it should free up any resources tied to that variable, hence 
increasing the amount of available SRAM memory. Initially, the thought was that because variables 
are stored in SRAM memory, which is a scarce commodity, limiting the scope of a variable would help 
with managing that scarce memory. While this could be important given the limited amount of memory 
most  m c boards have, experiments done by the author suggests that the storage used by the variable is 
 not  immediately reclaimed when the variable goes out of scope. In other words, statement block scope 
variables do not appear to be more memory efficient than other scope levels. However, the concepts 
associated with statement block scope still apply. Perhaps future compiler refinements will make better 
use of memory reuse and garbage collection. Meanwhile, it doesn’t hurt to keep the scope of a variable as 
limited as possible. 

 It appears, therefore, that the real reason for using statement block scope is to limit access to the 
variable from other parts of the program. As a general observation, you probably won’t use statement block 
scope as much as you will function block scope.   

     Function Block Scope 
 A variable that has  function block scope  has life and visibility from the point of its definition to the end of the 
function in which it is defined. The shaded areas in Listing  7-3  illustrate local scope for variable  x . (You may 
hear function block scope called  local scope , too.) 

     Listing 7-3. Listing Block Scope for Variable x 

  int k;  
  void setup()  
  {  
    int x = 5;   // Scope for x starts here...  
    Serial.begin(9600);  

    if (x < MAXVAL) {  
     int temp;  // Scope for temp starts here  
     temp = x * 100;  
    }           // ...and temp scope ends here.  
    Serial.print("The value of temp is: ");  
    Serial.println(temp);  
  }             // ...and x scope ends here.   



CHAPTER 7 ■ STORAGE CLASSES AND SCOPE

147

 A variable with local scope has visibility and life that extends from its point of definition to the 
closing brace of the function in which it is defined. In Listing  7-3 , variable  x  is in scope from its 
definition to the closing brace of the  setup()  function. This means that any program statement within 
the shaded area of Listing  7-3  has access to variable  x . Anything outside the shaded area knows nothing 
about  x . 

 Function block scoped variables are quite common in C programs. Indeed, function block scope is 
consistent with viewing a function as a black box. Nothing outside of the function has a clue about the data 
defined within the black box. Function block scope offers a degree of encapsulation, but is not so restrictive 
as to render the variable useless. (Statement block scope is so restrictive that it finds limited use. It would 
likely be more popular if it truly always saves memory resources.) As you learned in Chapter   6    , functions are 
task-oriented pieces of code and function block scoped variables work in concert to solve a particular task. 
When their work is done (i.e., the function block code has been executed), the variables within that function 
cease to exist as far as the rest of the program is concerned. 

 What would happen if you moved the definition of  x  as shown in the following code fragment? (Note how 
we have moved the definition of  x  to the bottom of the function.) When you try to compile this variation of 
Listing  7-1 , 

  void setup()  
  {  
    Serial.begin(9600);  

    if (x < MAXVAL) {  
     int temp;  
     temp = x * 100;  
    }  
    Serial.print("The value of temp is: ");  
    Serial.println(temp);  
    int x = 5;                    // New definition point...  
  }  

 the compiler issues the following error message: 

  StatementBlockScopeProgram.ino: In function 'void setup()':  
  StatementBlockScopeProgram.ino:15:7: error: 'x' was not declared in this scope  

 What went wrong? The problem is that variable  x  doesn’t come into scope until it is defined at the 
bottom of the  loop()  function. However, the program code attempts to access  x  before its definition 
takes place. This is one reason that most programmers place the data definitions used within a function 
immediately after the opening brace for the function body. 

     Name Collisions and Scope 
 What happens if you define a variable named  temp  in  setup()  but also have another variable named  temp  
in  setup(),  but within the  if  statement block? Won’t the two variables “collide” because they have the same 
name? There is no name collision because the first  temp  is defined within the  if  statement block (statement 
block scope) and the second  temp  is defined outside the  if  statement and has function block scope. In fact, if 
you had the following code fragment in your program: 

  if (x < MAXVAL) {  
   int temp;  

http://dx.doi.org/10.1007/978-1-4842-0940-0_6


CHAPTER 7 ■ STORAGE CLASSES AND SCOPE

148

   temp = x * 100;  
  }  
  int temp;  

 the second definition of  temp  does not generate a duplicate definition error because the  temp  defined within 
the  if  statement block has died before the second definition of  temp  takes place. 

 To drive the idea home that function block scope is different than statement block scope, make the 
following changes to Listing  7-1 . 

  #define MAXVAL 1000  

  void setup()  
  {  
   int x = 5;  
   Serial.begin(9600);  
   if (x < MAXVAL) {  
     int temp;  

     temp = x * 100;  
     Serial.print("The lvalue for temp is: ");  
     Serial.println((long) &temp);  
     Serial.print("The rvalue for temp is: ");  
     Serial.println((long) temp);  
    }  
    int temp;  

    Serial.print("The lvalue for 2nd temp is: ");  
    Serial.println((long) &temp);  
    Serial.print("The rvalue for temp is: ");  
    Serial.println((long) temp);  
  }  

 The following statement: 

  Serial.println((long) &temp);  

 uses the “address of” operator ( & ), which causes the code to display the lvalue of a variable, rather than its 
rvalue. (You will learn more about the address of operator in Chapter   8    .) If you run the program, the serial 
monitor should look similar to Figure  7-1 .  

http://dx.doi.org/10.1007/978-1-4842-0940-0_8


CHAPTER 7 ■ STORAGE CLASSES AND SCOPE

149

 The output in Figure  7-1  was very surprising to me! When I ran this code using Arduino 1.0.5 of the IDE, 
the memory address for the  temp  defined with the  if  statement block scope was 2292, but the  temp  defined 
with function block scope was stored at memory address 2294. Clearly, with that version of the compiler, the 
two variables had different lvalues even though they shared the same name. 

 However, when I compiled the same code under IDE 1.5.8, the results shown in Figure  7-1  are 
displayed. What this output means is that the compiler is smart enough now to optimize the second memory 
allocation for  temp  away and just “reuse” the old allocation for  temp . (Release 1.6 is also different than what’s 
shown in Figure  7-1 .) Because ANSI does not require the compiler to initialize variables defined with either 
function or block scope, the “new”  temp  retains the “old”  temp ’s value! Still, the fact that there are two 

  int temp;  

 definition statements in  setup() , but they don’t produce a “duplicate definition” error, shows that they are 
actually different variables from the compiler’s point of view. This is true because their scope levels are different. 

 If two variables share the same name at the same scope level, you will get an error message. For 
example, if you modified the code to the following (read the program comments closely): 

  #define MAXVAL 1000  
  void setup()  
  {  
    int x = 5;  
    int temp;     // definition of temp with function block scope  

    if (x < MAXVAL) {  
      int temp;   // definition of temp statement block scope  

  Figure 7-1.    The lvalues for temp       

 



CHAPTER 7 ■ STORAGE CLASSES AND SCOPE

150

      temp = x * 100;  
      Serial.print("The lvalue for temp is: ");  
      Serial.println((long) &temp);  
    }  
    int temp;     // oh-oh...definition of temp with function block           // scope...again  

    Serial.print("The lvalue for 2nd temp is: ");  
    Serial.println((long) &temp);  
  }  

 The compiler issues the following error message: 

  StatementBlockScopeProgram.ino:12:6: error: 'int temp'  
  previously declared here  
  Error compiling.  

 Because you now have two definitions of  temp  at the same scope level (i.e., function block scope within 
the same function), the compiler must issue an error message.   

     Global Scope 
 From time to time, you need a variable that is accessible by all functions within the entire program’s source 
code file. If you have a piece of data that must be available everywhere in the program, that variable could be 
defined with global scope. A variable has  global scope if the data item is defined outside of a function block in 
the current source code file . Look at Listing  7-1 . Near the top of the listing you can see variable  k  defined as: 

  int k;  

 Note that  k  is defined outside of the  setup()  and  loop()  function blocks. In this case, the scope for 
variable  k  extends from its point of definition to the end of the source code file. The global scope for  k  is the 
shaded area in Listing  7-4 . This means that any statement that appears after the definition of  k  has access to 
 k; k  is “globally” accessible to all functions and statement blocks within the source file. 

    Listing 7-4. Global Scope for Variable k 

  /**  
    Program: Demonstrate the concept of statement block scope  

    Author: Dr. Purdum, Dec. 18, 2014  
  **/  
  #define MAXVAL 1000  

  int k = 0;   // Scope for k starts here...  
  void setup()  
  {  
    int x = 5;  

    Serial.begin(9600);  



CHAPTER 7 ■ STORAGE CLASSES AND SCOPE

151

    if (x < MAXVAL) {  
     int temp;  
     temp = x * 100;  
    }  
    Serial.print("The value of temp is: ");  
    Serial.println(temp);  
  }  
  void loop()  
  {  
  }   // Scope for k ends here...   

 The good news is that you now have a variable that all of the functions in the file can access. This makes 
it easy to use the value of  k  within each function in the source code file. The bad news is that you now have 
a variable that all of the functions in the file can access. That is, we have thrown the idea of encapsulation 
out the window because everything in the source file has access to  k . This is kind of like locking the princess 
in the castle keep and then handing out copies of her room key to every knight in the realm. Every element 
(knight) in the program can mess around with  k  (Princess Kay). If something goes amiss with  k , it’s now 
more difficult to determine the cause of the problem because access to  k  is no longer restricted. 

     Trade-offs 
 Obviously, there’s a trade-off here. Do you use more restrictive definitions (i.e., use statement or function 
block scope) to protect your variables and pass the variable as a function argument, or do you use global 
definitions to make it easier to share data between functions? The answer is: It depends. If you have a 
variable named  port  defined in  loop()  and you’ve written a function named  SetPort()  that needs access to 
 port , your code needs to make  port  available to the  SetPort()  function. If you move the definition of  port  
outside of  loop()  and let it have global scope,  SetPort()  now has full access to  port.  However, giving  port  
global scope is not an ideal solution because you are no longer encapsulating and protecting the variable 
from contamination by forces outside of  loop() . Global scope means the data is exposed to any evildoers that 
might exist in the program, and if they do something nasty to  port , where do you start looking for the culprit? 

 However, alternatives do exist. The obvious alternative is to keep the definition of  port  inside  loop() , 
thus giving it function scope, but pass  port  as a function argument to  SetPort() . Now  SetPort(port)  can use 
the value of  port,  but still afford it an enhanced level of protection. If something strange now happens to 
 port,  at least you have a reduced number of places where  port  went south to the function where it is defined.  

     Global Scope and Name Conflicts 
 Again using Listing  7-4  as a point of discussion, suppose you define a variable named  k  inside the  loop()  function. 
Because the global scope of  k  includes  loop()  (see Listing  7-4 ), won’t the two variables have a name collision? 

 Nope. 
 The reason is because the syntax rules for C state that  the variable with the most restrictive scope level 

prevails in situations where they are both in scope . In our example, because the  k  defined within  loop()  has 
a more restrictive function block scope level than the  k  with global scope, the function block scope variable 
prevails over the global scope  k  when execution is taking place within  loop() . If you were silly enough 
to define yet another  k  variable within the  if  statement block, that  k  would prevail when the program is 
executing the  if  statement block, even though the other two  k  variables are in scope. 

 Of course, having two  k  variables defined in the same program—even at different scope levels—is 
reason enough for you to be tarred and feathered. The rule for defining two different variables using the 
same name in a program is simple: Don’t.   



CHAPTER 7 ■ STORAGE CLASSES AND SCOPE

152

     Scope and Storage Classes 
 Arduino C recognizes four storage classes:  auto ,  register ,  static , and  extern . All four are keywords in Arduino C 
and cannot be used as variable names. If you try to define variables named as follows: 

  int register;   // Bad names...  
  int auto;  

 the compiler issues an error message stating: 

  error: declaration does not declare anything  

 Because these keywords are storage classes for variables, the compiler is expecting the name of the 
variable to appear before it reads the semicolon. Clearly, the compiler recognizes both as keywords but will 
not let you use them as a variable name. 

 Now, let’s see how these storage classes work in a program. 

     The auto Storage Class 
 The  auto  storage class is the default storage class for variables with function block scope. You can also define 
 auto  variables with statement block scope, as in 

  auto int temp;  
  for (auto int k; k < MAXVAL; k++)  

 and the compiler accepts the syntax without error. The actual impact of using an  auto  storage class 
in Arduino C appears to make no difference to the generated code, and, therefore, relegates itself to a 
documentation feature. The author has not seen the  auto  keyword used in published code for years, 
although there may be some examples. (No doubt someone will write an article now that uses the  auto  
keyword!) Personally, it doesn’t seem worth the effort to use the  auto  keyword.  

     The register Storage Class 
 The  register  storage class is used to inform the compiler that the data item should be stored in a  m c register 
rather than in memory. The idea is that such a data definition would optimize the generated code for speed 
by keeping the variable in a register. The use of the keyword  register  is a  suggestion  to the compiler’s code 
generator, not an edict. That is, the code generator makes the final decision about the fate of a variable 
defined with the  register  storage class. The syntax is: 

  register int myVal;  

 The compiler is pretty smart anyway and makes heavy use of its register set, so it seems unlikely that 
using the  register  storage class in a data definition is going to make much difference. (If you’re really into 
this kind of thing, look at the documentation for the  avr-objdump.exe  program in the Tools directory for 
dumping object files and allowing you to inspect the generated code. Using that tool is beyond the scope of 
this book.) 

 As a general rule, the compiler is pretty smart without our help, so there is probably little to be gained by 
telling it that it should use a  register  for a particular variable.  



CHAPTER 7 ■ STORAGE CLASSES AND SCOPE

153

     The static Storage Class 
 As you know, variables with function or statement block scope die when you exit the function in which they are 
defined. This means that each time the function is called, a new set of these variables is created. This also means 
that any values for the variables in the function from the previous execution of the function’s code are lost. 

 There are, however, situations where it would be nice if you could preserve the value of a variable between 
function calls. For example, you might like to maintain a count of the number of times a particular function is 
executed. That goal is not possible with variables defined with the default ( auto ) storage class because they are 
re-created each time the function is called. Obviously, one solution is to move the variable of interest out of the 
function and define it with global scope. While this solves the lost-value problem, you are exposing the variable 
to the room key issues of data privacy. The  static  storage class solves this problem in a more elegant way. 

 Consider the program in Listing  7-5 . 

   Listing 7-5. Using the static Storage Class 

  void setup() {  
    Serial.begin(9600);  
  }  

  void loop() {  
    while (true) {  
      Serial.println(MyCounter());  
    }  
  }  

  int MyCounter()  
  {  
     int counter = 0;  
     // do some stuff...  
     return ++counter;  
  }   

 Study the code before reading on. What do you expect the  Serial.println(MyCounter())  statement 
to print? If you said 0, you get a C. If you said 1, you get an A. Note that variable counter uses the default 
( auto ) storage class. Therefore, counter is set to 0 each time the  while  loop in the  loop()  function causes 
the  MyCounter()  function to be called. Because we use the pre-increment operator on  counter  in the 
 MyCounter()  function, its value is incremented to 1  before  the value is returned to  loop() . That’s why its 
value is 1 instead of 0 on each pass through the loop. No matter what, the value seen in  loop()  remains 1 
forever. 

 Now add the  static  keyword at the start of the definition of  counter , like this: 

  static int counter = 0;  

 and recompile, upload, and run the program. What happens to the program output? (You’re going to have to 
type in the code and run it to find out. It’s good practice.)  



CHAPTER 7 ■ STORAGE CLASSES AND SCOPE

154

     The Effect of the static Storage Class 
 Using the  static  storage class specifier causes the compiler to generate code that preserves the value of 
 counter  between function calls to  MyCounter() . First, the data definition of  counter  is not executed each 
time the function is called. In fact,  counter  is not generated using the stack mechanism you studied in 
Chapter   6    . Rather,  counter  is created when the program first begins execution and is allocated in such a 
way (i.e., in a piece of memory devoted to global-type data storage called the heap) that its current value 
is maintained throughout the program’s execution. The compiler takes care of these details for you. The 
end result, however, is that you have a variable that can maintain its value between function calls without 
exposing it outside of the function in which it is defined using global scope. In other words, the  static  
storage class allows you to encapsulate a variable, but still allow it to retain its value between function calls. 
It’s a have-your-cake-and-eat-it-too kind of thing. 

 If you need to set the starting value of a static variable to something other than 0, the data 
definition  must  specify that starting value. For example, if you need the starting value to be 10, the 
definition must be: 

  static int counter = 10;  

 You can only set the initialized value for a  static  variable at its point of definition. By default, 
 static  variables are initialized to 0. While that may seem to make the statement that initializes the 
counter to 0 unnecessary, you should  never  assume compiler behavior if you don’t have to. It almost 
never pays to be lazy. Explicitly initialize the variable yourself. If nothing else, it documents your 
intention.  

     The extern Storage Class 
 Consider the short program presented in Listing  7-6 . 

   Listing 7-6. Short Program with Error 

  void setup() {  
    // put your setup code here, to run once:  
    Serial.begin(9600);  
  }  

  void loop() {  
    number *= number;  
    Serial.println(number);  
  }   

 Type the code in and try to compile it. Obviously, the program won’t compile because there is no 
definition for  number  in the source code.  

     Adding a Second Source Code File to a Project 
 If you look closely at Figure   1-5     in Chapter   1    , on the upper-right edge of the screen just below the icon that 
looks like a magnifying glass is a downward-pointing triangle. Click that triangle. You should see a small 
menu similar to that shown in Figure  7-2 . When you see that menu, click the New Tab option. Your display 
will change to look like Figure  7-3 .   

http://dx.doi.org/10.1007/978-1-4842-0940-0_6
http://dx.doi.org/10.1007/978-1-4842-0940-0_1#Fig5
http://dx.doi.org/10.1007/978-1-4842-0940-0_1


CHAPTER 7 ■ STORAGE CLASSES AND SCOPE

155

  Figure 7-2.    The “triangle” menu       

  Figure 7-3.    Giving the new program tab a name       

 

 



CHAPTER 7 ■ STORAGE CLASSES AND SCOPE

156

  Figure 7-4.    IDE with new source code tab       

 Notice that near the bottom of the source code window there is a text box for entering a name for the 
new program tab that’s about to be created. I named mine  myExternPage . Now click OK; the IDE looks like 
Figure  7-4 . Notice how there is a new source code tab in the source code window named  myExternPage . Also 
notice that I have added the definition for  number  in this new source code tab.  

 It’s important to note that by creating a new source code tab in the IDE, you are also creating a new disk 
file for the project that uses the same name as the tab name you gave it. This new source code file appears 
under the sketch name for the project being developed. As you can see at the top of Figure  7-4 , I’ve named 
this sketch  ExternTestCode . Because this also becomes the directory where the source code for the sketch 
is located, the new  myExternPage  file also appears in that directory. Both source code files carry the “ino” 
secondary file name. 

 



CHAPTER 7 ■ STORAGE CLASSES AND SCOPE

157

   Using the extern Keyword 
 Now click the first tab and add the following line at the very top of the file. (We are giving  number  
global scope.) 

  extern int number;  

 The keyword  extern  is a storage class modifier that tells the compiler that the variable is defined 
in a different source code file (i.e., it’s defined in  myExternPage.ino ) but let me use it in this file (i.e., 
 ExternTestCode.ino ) as an  int  variable. Because the variable named  number  is defined in the second 
source code file, it has an lvalue assigned when that code file is compiled. Therefore, the keyword 
 extern  means the file is defined in another file, so its lvalue is not known in this file. Therefore, the 
statement 

  extern int number;  

  is a data declaration, not a data definition.  In Chapter   3     I said that data declarations form an attribute 
list, but do not allocate memory for the variable. In terms of the symbol table, the  extern  declaration 
statement tells us the variable’s ID, its data type, and its scope level. We do, therefore, have a 
complete attribute list with enough detail to allow us to use it in this file even though it is defined in 
a different file. The statement cannot, however, tell us its lvalue because the variable is defined in 
another file. 

 You’re probably thinking: “Wait a minute! We must know the lvalue of a variable to be able to use it, but 
you’re telling us we don’t know the lvalue. How can that work?” 

 I can explain with a simplified explanation of the compile process itself. When the compiler begins the 
task of generating the code for the file with the  extern  keyword in it, any point where the compiler needs to 
supply the lvalue for  number , it instead leaves two question marks because it doesn’t know the lvalue for 
 number  at this point in the compile process. (It doesn’t really do this, but it works for my explanation.) Now 
the compiler opens the second source code file and finds the  definition  for  number . It can now fill in the 
lvalue for  number  in the symbol table. 

 One of the last steps in creating an executable program (collectively all of this is called the  build 
process ) is the  linker  pass. It is the linker’s responsibility to fill in any missing lvalues that may have been 
created during the compile process. The linker is going to find the two question marks for the missing 
lvalue for  number  in the first source code file. However, a quick peek in the symbol table for  number  locates 
the lvalue and the linker overwrites the two question marks with the lvalue for  number . Now the code in the 
first source code file knows where the variable defined in the second source code file lives, and all is right 
with the world. 

 By the way, the linker does the same thing for all of the library files you might use (e.g., the code for the 
 Serial  object). After all, there has to be lvalues for library functions, too. Think about it. (If you’d like more 
information about the build process, see    http://arduino.cc/en/Hacking/BuildProcess     .)  

   Why a New Source Code File? 
 Sometimes a project gets to the point where it makes sense to split the source code into two or more source 
code files. Sometimes you may want to split the file simply because it’s getting too long and you’re tired of 
scrolling from top to bottom in such a long file. Perhaps you split the files such that those functions that are 
concerned with the Input Step are in one source file, while functions dealing with the Process Step are in 
another source file. It may even make sense to have a third source code file for the Display Step. The  extern  
keyword, in many cases, makes it possible to split source files.    

http://dx.doi.org/10.1007/978-1-4842-0940-0_3
http://arduino.cc/en/Hacking/BuildProcess


CHAPTER 7 ■ STORAGE CLASSES AND SCOPE

158

     Function Prototypes 
 Suppose you have a statement in  loop()  that calls our  IsLeapYear()  function that we developed in Chapter   6    . 
Further suppose that we placed the actual code for the function in a second file in the project. This means 
we want to use the function in file 1, but have defined it in file 2. How can you solve this problem? 

 If you place the following near the top of the first source file before  setup() : 

  int IsLeapYear(int yr); // This is a function prototype for IsLeapYear()  

 you are giving the compiler enough information to use  IsLeapYear()  in the program. This statement is called 
a  function prototype . A function prototype is a data  declaration  that tells the compiler the specifics it needs 
to know in order to let you use the function in the current source file. More specifically,  a function prototype 
allows the compiler to create an attribute list for the data object and stuff it into the symbol table . However, 
because the actual code for the data object  IsLeapyear()  is in another file, it cannot fill in the lvalue for the 
object. This is why function prototypes are data  declarations , not data definitions. 

 Back in Chapter   4    , I pointed out that many programmers use the terms “define” and “declare” as 
though they are synonyms. We could agree with them, but then we’d both be wrong. Each has a very specific 
meaning. A data declaration is simply an attribute list for a variable … memory is not allocated for a data 
declaration. This means a data declaration has an empty lvalue column in the symbol table. What a function 
prototype does is say: “Okay, compiler, I don’t know where this data object is going to end up in memory 
(lvalue =  ? ), but here’s enough information for you to use the object in this source code file.” When all of the 
source files have been compiled and the pieces are all pulled together (this is the job of the linker), only then 
does  IsLeapYear()  have a known lvalue. 

 Whenever you need to access a variable in one file but it is actually defined in a different file, use the 
 extern  keyword. The  extern  keyword in front of what would otherwise be a data definition turns it into a data 
declaration. The  extern  access specifier simply tells the compiler: “Hey! This variable is not defined in this 
file. However, use this statement so you can create an attribute list for the variable so I can use it in this file.” 
In a real sense, therefore, the  extern  keyword serves the same purpose for variables as a function prototype 
does for functions. That is,  extern  allows you to create a data declaration for a variable that is defined in some 
other file.  

     #include Preprocessor Directive 
 As your gain experience using C, you will move to more complex programs. For example, you may want to 
add a 16×2 LCD display to your project. If you do, you will likely need to access the Liquid Crystal Display 
library that is available with the Arduino IDE. Once again, there are literally hundreds of libraries available 
for the Arduino, and there is no reason for you to reinvent the wheel. Always search for a library before you 
start writing one. Chances are pretty good that someone has already done a good chunk of the work for you. 

 If you were developing a program to use the LiquidCrystal library, the first place you would want to look 
for help on using the library is in the 

  libraries\LiquidCrystal\Examples  

 directory off the Arduino main directory. The Examples subdirectory would give you several sample 
sketches that use the library. This is a great way to learn how to use the library properly. 

 If you load one of these example sketch files, you will see that they begin with the line: 

  #include <LiquidCrystal.h>  

http://dx.doi.org/10.1007/978-1-4842-0940-0_6
http://dx.doi.org/10.1007/978-1-4842-0940-0_4


CHAPTER 7 ■ STORAGE CLASSES AND SCOPE

159

 This is an example of the  #include  preprocessor directive. This directive tells the C preprocessor to find 
a file named  LiquidCrystal.h , open it, and  read its contents into the current source code file at this point in 
the program . Files that end in “.h” are called  header files . Therefore,  LiquidCrystal.h  is the header file for the 
LiquidCrystal library. (You can find this header file at  libraries\LiquidCrystal\src .) 

 Okay … so what? 
 Well, if you open the header file, you will discover it is packed with all kinds of information that the 

LiquidCrystal library needs to do its job. If you look about halfway down the file, you’ll find the following lines: 

  void clear();  
  void home();  

  void noDisplay();  
  void display();  
  void noBlink();  
  void blink();  
  void noCursor();  
  void cursor();  
  void scrollDisplayLeft();  
  void scrollDisplayRight();  
  void leftToRight();  
  void rightToLeft();  
  void autoscroll();  
  void noAutoscroll();  

  void createChar(uint8_t, uint8_t[]);  
  void setCursor(uint8_t, uint8_t);  

 What do these lines look like to you? That’s right! They are function prototypes for the functions that are 
available to you in the LiquidCrystal library. (Actually, because these are written as part of the LiquidCrystal 
C++ class, they are really  class method prototypes , not function prototypes.) Note how  setCursor()  uses two 
 unsigned  8-bit  ints  as its function arguments. Could those be row-column coordinates? 

     A common #include Idiom 
 At the top of the  LiquidCrystal.h  header file are the lines: 

  #ifndef LiquidCrystal_h  
  #define LiquidCrystal_h  

 These two lines say: “If the symbolic constant  LiquidCrystal_h  (note the underscore) is not yet defined 
in this sketch,  #define  it now.” However, if you look at the very last line in the file, it is this: 

  #endif  

 Think about what this means. If the symbolic constant  LiquidCrystal_h  is already defined at this 
point, the entire contents of the head file is ignored. Why would you want to do that? Actually, a complete 
explanation is given in Chapter   14    . However, I can give a quick answer here: the reason is to avoid duplicate 
definition errors. Header files may contain data definitions in them. If we didn’t have a mechanism to 
detect that they have already been defined, the compiler would issue a bunch of duplicate definition errors. 
By using the  #ifndef  preprocessor directive at the top of the header file, we avoid reading the file twice. 

http://dx.doi.org/10.1007/978-1-4842-0940-0_14


CHAPTER 7 ■ STORAGE CLASSES AND SCOPE

160

Good coding practices say we should never read the same header file twice—but hiccups happen. This 
technique simply prevents the hiccup from causing a problem.  

     Where Are the Header Files Stored? 
 Actually, there are two flavors for using the  #include  preprocessor directive. In the one presented earlier, 

  #include <LiquidCrystal.h>  

 note how the header file name is surrounded by angle brackets ( <> ). When angle brackets are used around 
the header file name, the compiler looks in the default file include directory for the header file. In this case, 
the compiler looks in the LiquidCrystal\src directory. 

 However, as you gain experience in writing code, you may well wish to write your own header files for a 
sketch. In that case, you would use the following: 

  #include "MyHeaderFile.h"  

 The  double quote marks  tell the compiler to look for the header file in the current sketch directory 
where you are writing the program. If the compiler cannot find the header file there, it would next look in the 
default (angle brackets) header file directory. By using the appropriate characters surrounding the header 
file name, you can tell the compiler where to find the necessary header file.   

     The volatile keyword 
 Although rarely used, I should mention the  volatile  keyword at this point. The  volatile  keyword is a variable 
 qualifier  rather than a storage class or access specifier. The syntax for using it is: 

  volatile int lastTestValue;  

  volatile  is a directive to the compiler that says this particular variable must be loaded from memory any 
time the code references it. Often, when code is using a variable, that variable’s rvalue is already in an Atmel 
temporary register so there is no need to reload it again from memory. This results in a small performance 
boost because a trip to memory to reload the value is bypassed. Optimizing compilers do this kind of thing 
all the time. 

 While this optimization is a good thing most of the time, there are times when the value stored in 
memory can get out of sync with the value held in a register. This kind of problem is most likely to occur 
when Interrupt Service Routines (ISRs) are being used in the program. (There is an example involving 
interrupts in Chapter   13    .) By using the  volatile  qualifier, you are telling the compiler to refetch the rvalue of 
the variable (just in case it was cached) anytime the program uses that variable. This decreases the chance 
that the rvalue for the variable is out of sync.  

     Summary 
 You’ve covered a lot of ground in this chapter. The concept of scope is more important than many 
programmers realize because it has the potential for making your programs easier to read and debug. You 
should also appreciate what function prototypes bring to the party, especially when you split source code 
files. As you begin writing nontrivial programs, it makes sense to split the source code into different files. 
If nothing else, it makes scrolling through a source file a little quicker than it might be otherwise. Hopefully, 
this chapter also makes it clear that there is a very real difference between the terms  define  and  declare . 

http://dx.doi.org/10.1007/978-1-4842-0940-0_13


CHAPTER 7 ■ STORAGE CLASSES AND SCOPE

161

 I encourage you to create a program of your own that has two (or more) source files and uses the  extern  
keyword to communicate data between the two files. The only way to learn this stuff is to jump in the mud 
and start slogging around in it. 

 EXERCISES

     1.    What are the scope levels in C? 

 Answer: There are three scope levels in C: statement block, local (function), and global.  

    2.    Why is it usually a good thing to avoid using the global storage class? 

  Answer: The global storage class means that the data item is exposed for use to every data 
object in the file, from its point of definition to the end of the file. This is bad because it 
makes it more difficult to determine where erroneous values creep in when the variable has 
an improper test value. Global scope defeats the benefits of encapsulation.  

    3.    What are the C storage classes? 

 Answer: The storage classes are:  auto ,  register ,  static , and  extern .  

    4.     Suppose integer variable  myDay  is globally defined in one file, but you need to 
access it in a different source file. What do you need to do to have access to 
 myDay ? 

  Answer: You need to have a variable declaration for  myDay  in source files where it is not 
defined. You do this by using the statement: 

               extern int myDay;   

    5.    What is the default scope level for a function? 

 Answer: All functions in C have global scope.  

    6.    What is the default storage class for a library function. 

 Answer:  extern . Think about it.  

    7.     What would happen to our  IsLeapYear()  function if some idiot passed it a 
“negative year”? 

  Answer: Actually, the function still provides the correct answer. However, it might be a good 
idea to filter out negative years before the calculation. How would you do this? (Hint: Check 
out the  abs()  standard library function.)  

    8.     Often external devices send messages to the Arduino over the  Serial  object or 
some other communication link (e.g., Wi-Fi). Usually, these messages come in 
as a sequence of characters, like 70.0,95,15:00. Perhaps this message conveys 
the message: “The temperature is 70 degrees with 95 percent humidity at 
3PM.” How would you extract this information and display it on the Serial 
monitor? I’ll give you a starting place and the answer doesn’t need to use the 
 loop()  function. Hint: you will likely want to use the standard library function 
 atoi()  to help you. 



CHAPTER 7 ■ STORAGE CLASSES AND SCOPE

162

               void setup() {  
                  char message[] = "70.0,95,15:00";  

                  int index;  
                  int holdIndex = 0;  
                  int temperature;  
                  int humidity;  

                  // You need to provide the Process Step  

                  Serial.print("The temperature is = ");  
                  Serial.print(temperature);  
                  Serial.print(" with humidity =  ");  
                  Serial.print(humidity);  
                  Serial.print("at ");  
                  Serial.print(&message[holdIndex]);  
               }  

 Answer: This is not a trivial program. If you got yours working, you are really doing well! 

               void setup() {  
                  char message[] = "70.0,95,15:00";  

                  int index;  
                  int holdIndex = 0;  
                  int temperature;  
                  int humidity;  

                  Serial.begin(9600);  

                  index = FindCharacter(message, ',');  
                  if (index > 0) {                  // Found a comma  
                        message[index] = '\0';         // Make it a string  
                        temperature = atoi(message);  
                        holdIndex += index + 1;        // Look past the null for next pass  
                  }  
                   index = FindCharacter(message + holdIndex, ','); // Really 

passing message[5]  
                  if (index > 0) {                  // Found a comma  
                        message[index] = '\0';         // Make it a string  
                        humidity = atoi(&message[holdIndex]);  
                        holdIndex += index + 1;  
                  }  
                  Serial.print("The temperature is = ");  
                  Serial.print(temperature);  
                  Serial.print(" with humidity = ");  
                  Serial.print(humidity);  



CHAPTER 7 ■ STORAGE CLASSES AND SCOPE

163

                  Serial.print(" at ");  
                  Serial.print(&message[holdIndex]);  
               }  
               void loop(){}  

               /*****  
                 This method looks for a specific character in a string  

                 Parameter list:  
                     char msg[]    an array of characters, null terminated  
                     char c        the char to find  

                 return value:  
                     int           the position in the string where found or  
                                               0 if no match  
               *****/  
               int FindCharacter(char msg[], char c)  
               {  
                 int i = 0;  

                 while (msg) {  
                   if (msg[i] == c) {  
                      return i;  
                   } else {  
                     i++;  
                   }  
                 }  
                 return 0;  
               }  

 The key is the  FindCharacter()  function, which marches through the input string looking 
for the comma character. When it finds one, it returns the index number of the position 
in the string where the comma appears. This is assigned into  index  upon return from the 
function. With the input string of  “70.0,95,15:00” , index equals 4. The code then writes a 
null character at that position, so the string now looks like: “ 70.0NULL95,15:00".  The  atoi()  
function converts the substring “70.0” to an  int  value and assigns it into  temperature . 

 Note how the next call to  FindCharacter()  uses  message + holdIndex  as the string 
argument. This is the same as passing in  message[5] , or “95,15:00” as the start of the 
string because we added 1 to  holdIndex  in the  if  statement block. You should convince 
yourself that the after the second call to  FindCharacter() , the  Serial.println()  for the time 
simply display the “tail” of the string. 

 There are more efficient ways of writing this program, but we can’t use those techniques 
until after we understand something about C pointers.          



165© Jack Purdum 2015 
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming 
for the Arduino, DOI 10.1007/978-1-4842-0940-0_8

    CHAPTER 8   

 Introduction to Pointers           

 One of the most powerful features of the C programming language is pointers. While many of the features 
of any programming language have the power for you to shoot yourself in the foot, pointers give you the 
power to blow your entire leg off. Because of the raw power of pointers, many popular languages either don’t 
support pointers at all (e.g., Java) or only let you use them in a very limited way (e.g., C#). Personally, most 
people go wrong using pointers because they don’t really understand what pointers are or what they do. 
Fortunately, you’ve been introduced to programming in a way that will make understanding pointers a snap. 
With that understanding comes faster, more efficient C programs. Let’s jump right in! 

     Defining a Pointer 
 Because a pointer is a different type of data than anything you’ve studied thus far, the syntax necessary to 
define a pointer must also be different. Figure  8-1  shows the syntax for a pointer definition.  

type of data pointed to

Name of pointer

int *myPointer;

Asterisk indicates a pointer type 

  Figure 8-1.    Pointer syntax       

 Figure  8-1  shows that there are three basic components to a pointer definition:

•    The type of data that this pointer is associated with  

•   An asterisk to mark this variable as a pointer instead of a “regular” variable  

•   The name of the pointer    

 Let’s examine each of these three elements in detail and see what they mean. However, we will do that 
examination in reverse order of importance. You’ll understand why I chose this order shortly. 

 



CHAPTER 8 ■ INTRODUCTION TO POINTERS

166

     Pointer Name 
 Pointer variables have the same naming rules as do all other variables in C. In other words, you can give 
them any valid C variable name you wish, but because pointers are different, it’s worthwhile giving them a 
name that jogs your memory that they are a pointer. Clearly,  myPointer  would do this, but the more common 
convention is to begin the pointer variable name with  ptr . Some sample pointer names might be: 

  ptrMyQuizScores  
  ptrNameptrPuppy  
  ptrStateCapital  
  ptrSisters  

 Again, it’s not imperative that you begin pointer variables with  ptr , but it doesn’t hurt to let everyone 
know that this is a pointer variable. You could, for example, store nitroglycerin in little celluloid spheres, but 
then naming each one “ping pong ball” is probably not a good idea. Likewise, it is not a good idea to give 
pointer variables a generic C variable name. Define your pointers in a way that tells the person reading the 
code that they are looking at a pointer.  

     Asterisk (*) 
 The asterisk is used in the pointer definition to inform the compiler that this is a pointer variable rather than 
a regular data type. After all, if you left the asterisk out of the pointer definition, it would look like any other 
data definition. Placing the asterisk in the definition marks the variable as a pointer and allows the compiler 
to treat the variable differently than it would otherwise. I will explain the difference later in this chapter. 

 Note that C doesn’t really care about the precise position of the asterisk, as long as it appears after the 
type specifier for the pointer and before the name of the pointer. Note the following asterisk placements: 

  int*  ptrTemp;           // Immediately after the type specifier  
  int   *  ptrHumidity;    // Floating between type specifier and name  
  int   *ptrDewPoint;      // Immediately before the name  

 C doesn’t really care which form you use. Personally, I kinda like the last version that ties the asterisk 
and the pointer name closely together. There is no theoretical reason for my preference. It’s how I learned 
how to define pointers almost 40 years ago. It’s an old-dog-new-trick thing with me. 

 When you get to the end of the chapter, write some sample sketches and get some experience 
with pointers trying out the various definition styles. Then pick a style you like and use it from then on. 
A consistent coding style really does make it easier to read and debug program source code.  

     Pointer Type Specifiers and Pointer Scalars 
 From an operational point of view,  the data type specifier for the pointer is the most critical part of the 
definition.  In Figure  8-1 , the  int  type specifier tells the compiler that this pointer will only be used with 
 int  data types. While the syntax rules allow you to use an  int  pointer with a different type of data, doing so 
usually results in a disaster. For example, all of the following are valid pointer definitions: 

  int *ptrSheepCount;  
  char *ptrFirstName;  
  long *ptrBigVal;  
  float *ptrYardsOfCloth;  



CHAPTER 8 ■ INTRODUCTION TO POINTERS

167

 In these examples, each pointer is defined to point to a different type of data. That is,  the pointer’s type 
specifier is dictated by the type of data with which the pointer will be used . The rule is simple: 

  The pointer’s type specifier dictates the type of data to be used with that pointer.  
 Pointing one type of pointer to a different type of data is a train wreck waiting to happen. To make things 

even worse, it may  appear  that using a mismatched pointer is working in the program. Trust me … using 
pointers the wrong way will eventually result in a spectacular failure. 

 Okay, so pointer type specifiers are important. The real question is: Why are pointer-type specifiers 
so important? The reason is because pointers use the pointer type specifier in order to read/write the data 
correctly. 

   Pointer Scalars 
 Consider the following two pointer definitions: 

  char *ptrLetter;  
  int *ptrNumber;  

 Both of these statements define a pointer variable, but the type specifiers for each pointer tell you 
that they are to be used with different data types. When the compiler sees these two definitions, it places 
the two definitions in the symbol table and allocates memory for each. If you look back at the simplified 
symbol table shown in Chapter   3    , Figure   3-4    , the Data Type column for these pointer definitions would be 
an asterisk. One of the columns I didn’t show in the table is labeled Scalar. When compiling definitions of 
pointers, the compiler does fill in the Scalar column of the symbol table. For  ptrLetter  the scalar would be 1. 
For  ptrNumber  the scalar would be 2. 

 So, what determines the scalar size? The  scalar size is exactly the same as the Byte Length  as seen in 
Table   3-1    . Whatever the storage requirements are for a given data type, that’s its scalar size. If a  char  requires 
1 byte of memory to store it, that’s its scalar. If a  float  takes 4 bytes of memory to store it, its scalar is 4. Even 
better, however, is that you can create your own custom data types and pointers can also be used with those 
new data types. (I’ll cover those concepts in Chapter   10    .) 

 When the compiler finishes processing the preceding two pointer definitions, memory might look 
something like Figure  8-2 . If you look carefully at Figure  8-2 , you can see that  each pointer uses 2 bytes of storage .  

SRAM

ptr Number

2K

ptr Letter 2292 2294

0k

  Figure 8-2.    Memory map after pointer definitions       

 

http://dx.doi.org/10.1007/978-1-4842-0940-0_3
http://dx.doi.org/10.1007/978-1-4842-0940-0_3#Fig4
http://dx.doi.org/10.1007/978-1-4842-0940-0_3#Tab1
http://dx.doi.org/10.1007/978-1-4842-0940-0_10


CHAPTER 8 ■ INTRODUCTION TO POINTERS

168

 That’s odd. 
 Whenever we defined data types before, a  char  data type used one byte and an  int  used two bytes. 

Yet, the pointer definition shows that each pointer requires the same amount of storage; 2 bytes. 
Why? The reason is because the rvalue of a valid pointer variable is always one of two things: a memory 
address or  null . 

 If a pointer variable has an rvalue that is equal to  null , that means that the pointer is not safe to use. 
That is, a  null  pointer points to garbage and should not be used.  A useful, or valid, pointer variable always 
has an rvalue that is a valid memory address.  If your  m c board has 2K of SRAM memory and you have a 
 Serial.print()  statement that says its rvalue is 3000, stand back, cuz your program is about to go supernova! 
I explain why a little later in this chapter.   

     Why All Arduino Pointers Use Two Bytes for Storage 
 As you know, the Arduino family of  m c boards has three types of memory associated with them. The first is 
program (or flash) memory and it is in this section of memory into which your programs are loaded. This 
program memory is nonvolatile. That is, when power is removed from the board, your program memory 
remains intact. The second type of memory is SRAM, or static random-access memory. The variables that 
you use in your program are stored in SRAM memory. SRAM memory is volatile memory, which means 
that once power is removed from the board, the content of this section of memory is lost. The last type of 
memory is Electrically Erasable Programmable Read-Only Memory (EEPROM). EEPROM memory is also 
nonvolatile, which means that it can also retain its values even when power is removed. 

 You learned in Chapter   7     that as your program runs, variables come into scope and go out of scope 
depending upon what the code requires. These variables are stored in SRAM, which you can think of as 
being organized like the stack we discussed in Chapter   7    . Because the amount of SRAM is less than 65K 
(i.e., 2 16 , or the maximum value for a two-byte unsigned integer), it only takes two bytes to store a memory 
address for the program’s data. Unlike a PC that may have gigabytes of memory and hence must use 4-byte 
memory addresses, your  m c board can use 2-byte pointers because of the relatively small amount of SRAM 
available. (There are chips available that can address larger memory sizes and hence use 4-byte pointers. 
Diligent’s chipKit Max32, for example, has 512K of flash and 128K of SRAM. Because these memory sizes 
are greater than 65K, it uses 4-byte pointers.) In other words,  pointer variables are always allocated enough 
storage to hold a valid memory address . As mentioned earlier, all (properly initialized) pointers can have only 
two types of rvalues:

•    a memory address  

•    null     

 Okay, but where does this scalar thingy come in? Consider Figure  8-3 ; note how the  char  pointer is 
designed with a scalar of 1 byte, enabling it to “see” a  char  data type. It is the pointer’s type specifier that permits 
the pointer to work correctly with its designated data type. You know that an  int  data type requires two bytes 
of storage. This means that the  int  pointer has a scalar of two bytes so it can “see” an  int  data type correctly. If 
you define a pointer using the  long  type specifier, its scalar would be 4 bytes. If you look back at Table   3-1    , the 
middle column of that table (i.e., Byte Length) tells you the scalars for the different data types. You can conclude, 
therefore, that  the scalar value for a specific pointer is equal to the number of bytes required to store that data type 
in memory . In all cases, however, the pointer still only requires two bytes for storage for an Arduino.  

http://dx.doi.org/10.1007/978-1-4842-0940-0_7
http://dx.doi.org/10.1007/978-1-4842-0940-0_7
http://dx.doi.org/10.1007/978-1-4842-0940-0_3#Tab1


CHAPTER 8 ■ INTRODUCTION TO POINTERS

169

 A valid question you might be asking yourself at this point is: What do pointers bring to the table to 
make them worthwhile? Before we can answer that question completely, you need to understand how to 
initialize a pointer.  

     Pointer Initialization 
 The instant after you define a pointer, you should think of it as being unusable. That is, after the compiler 
processes the following statement 

  int *ptrNumber;  

Scalar of 1

Scalar of 2

1 byte; char

0

1

2

3

4

2 byte; int

0

1

2

3

4

  Figure 8-3.    Pointer scalars       

 



CHAPTER 8 ■ INTRODUCTION TO POINTERS

170

 you have an  int  pointer that has a garbage rvalue. Suppose the compiler ends up placing the pointer at 
memory address 2294 (see Figure  8-2 ). All you can count on is that  ptrNumber  has an lvalue of 2294 and its 
rvalue is whatever pattern of bits just happened to exist for those 2 bytes beginning at memory location 2294. 
That is, the rvalue of  ptrNumber  is garbage. If you’re worried about the random junk the pointer contains, 
you could define and initialize the pointer as part of its definition, as in: 

  int *ptrNumber = NULL;  

 This statement makes it clear that the pointer does not  point to  valid data and that it should not be used. 
Quite honestly, while this may be a good coding practice, most C programmers don’t initialize their pointers 
to  null . If you wish to define a pointer and initialize it to  null  using the symbolic constant  NULL , you need to 
add the following statement at the top of the source code file: 

  #include <stdio.h>  

 This header file contains a definition of the symbolic constant  NULL . The default header file directory 
for the Arduino compiler is wherever you installed your Arduino IDE followed by the path name: 

  hardware\tools\avr\avr\include  

 If you look in the  stdio.h  header file (or any of the other header files stored in the  include  directory), you 
are going to see some pretty cool, albeit intimidating, code. A complete understanding of all that you find 
there is beyond the scope of this book. However, if you’re really interested, simply copy the statement of 
interest into the Google search engine and read what the sources have to say. 

 Now that you know how to define a pointer and what its scalar is used for, let’s actually try to use a 
pointer. First, suppose you have the following three statements in a program: 

  int a;  
  int b = 5;  
  a = b;  

 The last statement actually does more work that you may think. Simplifying the compile process a 
bit, the statement says: “Go to  b ’s lvalue and make a copy the rvalue you find there (i.e., 5). Now go to the 
symbol table and look up  a ’s lvalue. Go to  a ’s lvalue and copy the rvalue of  b  into the rvalue for  a .” Simply 
stated,  most (non-pointer) assignment statements simply copy the rvalue of one variable into the rvalue of 
another variable . 

 Not so for pointer assignments.  

     Using the Address-Of Operator 
 Recall that a pointer should only hold a valid memory address or  null . This means that the rvalue of pointer 
variables don’t hold “normal” rvalues. Any pointer that is useful  must  hold a memory address. So how do we 
assign a memory address into a pointer. Simple! You use the  address-of  operator.  The address-of operator  ( & ) 
 says that you wish to use the lvalue of the variable, not its rvalue.  Read that last sentence over about a dozen 
times until it is etched in your brain. 

 Suppose you have the following code fragment in a program: 

  int number = 5;  
  int *ptrNumber;  



CHAPTER 8 ■ INTRODUCTION TO POINTERS

171

 Let’s further assume that  number  has an lvalue of 2292 and the lvalue for  ptrNumber  is 2294 (like in 
Figure  8-2 ). You initialized  number  with an rvalue of 5, but you didn’t initialize  ptrNumber , so it contains 
garbage at this point in the program. Now, let’s add another statement: 

  int number = 5;  
  int *ptrNumber;  

  ptrNumber = &number;  

 The purpose of the address-of operator ( & ) is to tell the compiler: “Don’t do the standard rvalue-to-
rvalue assignment in this statement. Instead, take the address (lvalue) of  number  (2292) and copy it into the 
rvalue for  ptrNumber .” 

 As before, read the previous sentence about 10 times and think about what it is saying. It is saying that 
the rvalue of  ptrNumber  is now the lvalue of  number . Reread and think again…. 

 First,  ptrNumber  now has an rvalue that holds the memory address (lvalue) of  number . This is exactly 
what  ptrNumber  should hold: The memory address, or lvalue, of the  int  variable named  number.  This 
relationship can be seen in Figure  8-4 . Notice that after the pointer assignment takes place, the address-of 
operator caused the lvalue of  number  to be copied into the rvalue of  ptrNumber . That is, you have initialized 
 ptrNumber  so it now “points to”  number . Think about what this means.  Because ptrNumber now knows the 
memory address where number lives in memory, ptrNumber has full access to number ’ s data (i.e., its rvalue).  
If  ptrNumber  has the right scalar value, which it does ( ptrNumber  is an  int  pointer and now points to the  int  
named  number ), you can use  ptrNumber  to change the rvalue of  number !   

ptrNumber number

points to

2294 2292 2292 5

  Figure 8-4.    The rvalues and lvalues for ptrNumber and number       

     The Indirection Operator (*) 
 If you wish to use a pointer to change the rvalue of the variable it points to, you use the indirection operator, 
which is the asterisk operator. Makes sense: we are going to use a pointer to indirectly change the value of 
another variable. 

 Wait a minute! The indirection operator is the same character as the multiplication operator. Why 
doesn’t the compiler throw a fit? The reason is because the compiler knows which operator to use based on 
the context in which you are using it. The multiplication operator requires two operands to work properly 
(e.g., operand1 * operand2). As you will see shortly, the indirection operator is a unary operator and only 
requires one operand. Therefore, the compiler knows from the context in which the asterisk is used as to 
which type of code to generate. 

 



CHAPTER 8 ■ INTRODUCTION TO POINTERS

172

 I have talked about  syntax errors , which occur when you don’t obey the rules of the language. 
I also mentioned earlier that  semantic errors  occur when you use the language in the wrong context. 
(I used the example of an English sentence, where I said: “The dog meowed.” The sentence has a noun and a 
verb as the rules of English require, but the context is wrong. This would be a semantic error.) 

 The syntax rule for the indirection operator is: 

  *variableID = expression1;  

 For example: 

  *ptrNumber = 10;  

  The indirection operator is the asterisk.  You can verbalize the preceding statement as: “Get the rvalue 
of  ptrNumber  (2292), go to that memory address, and copy the value 10 into  int  bytes of memory at that 
address.” Notice the importance of the pointer’s type specifier. It tells the compiler to convert the number 
10 into scalar bytes (i.e., an  int)  of data (i.e., 2 bytes) and then copy those bytes into memory address 2292. 
The result after the statement is finished is that  number  now equals 10. You have “indirectly” changed the 
value of  number  using a pointer variable. 

 Imagine the kind of mischief that might result if you defined  ptrNumber  to be a  char  pointer rather than an 
 int  pointer. In that case, the assignment statement using the indirection operator would convert the value 10 into a 
1-byte value and assign it into memory address for  number . The value for would now only be “half right” because 
the second byte of  number  would contain whatever random junk just happened to be in memory at that address. 

 The lesson is simple: don’t mix apples and oranges. If you want to use indirection to change an  int , you 
must use a pointer that was defined with the  int  type specifier. Otherwise, all bets are off and you’re on your own 
when it comes to debugging your program. (Actually, the Arduino compiler does a pretty good job of catching 
this type of error and issues an error message telling you it cannot convert one type of pointer into another type 
of pointer. It’s even better, however, if you don’t get caught doing this kind of thing in the first place!) 

   Using Indirection 
 Let’s write a short program that shows the use of pointers. The source code appears in Listing  8-1 . 

       Listing 8-1. A Simple Pointer Program 

  /*  
    Purpose: Simple program to demonstrate using a pointer  

    Dr. Purdum, Nov 22, 2014  
   */  
  #include <stdio.h>  
  int counter = 0;  

  void setup() {  
    int number = 5;  
    int *ptrNumber;  

    Serial.begin(115200);  
    Serial.print("The lvalue for ptrNumber is: ");  
    Serial.print((long) &ptrNumber, DEC);  
    Serial.print(" and the rvalue is ");  
    Serial.println((long) ptrNumber, DEC);  



CHAPTER 8 ■ INTRODUCTION TO POINTERS

173

    //=== Put new statements here!  

    Serial.print("The lvalue for number is: ");  
    Serial.print((long) &number, DEC);  
    Serial.print(" and has an rvalue of ");  
    Serial.println((int) number, DEC);  
  }  
  void loop() {}   

 The code in Listing  8-1  simply displays information about  ptrNumber  and  number  on your PC using the 
 Serial  object. The program output when I ran the program on my PC is shown in Figure  8-5 . For my machine, 
it shows that  ptrNumber  is stored at memory address 8690 has an rvalue of 168. The rvalue of 168 is the result 
of the random bits that happen to be stored in the two bytes starting at memory address 8690. If you had 
defined  ptrNumber  using the syntax  

  int *ptrNumber = NULL;  

 the rvalue of  ptrNumber  would be displayed as 0. For my computer, the lvalue for variable  number  was 8692 
with an rvalue of 5. You may have different values for everything except the rvalue of  number  should still be 5 
on your machine. 

 Now let’s add two new statements to the program shown in Listing  8-1  and rerun it. The statements are: 

  ptrNumber = &number;  
  *ptrNumber = 10;  

 You should place these statements in Listing  8-1  where you find the comment: 

    //=== Put new statements here!  

 Now recompile, upload, and run the new version of the program. Notice that the rvalue of  number  now 
displays as 10 rather than 5. The reason is because the first of the two new statements initializes  ptrNumber  
to point to  number  using the address-of operator. Next, you used the indirection operator to assign the value 
of 10 into  number .  

   Using the Indirection Operator in an Assignment 
 You can also use a pointer variable in an assignment. For example, add a new data definition for variable 
 k  near the top of the  setup()  function: 

  int k;  

 Now add the following new lines of code immediately after the last two lines you just added, so it looks like this 

  ptrNumber = &number;  
  *ptrNumber = 10;  
  k = *ptrNumber;  

 and add some code so you can see the value of  k  after the new statements: 

  Serial.print("The lvalue for k: ");  
  Serial.print((long) &k, DEC);  



CHAPTER 8 ■ INTRODUCTION TO POINTERS

174

  Serial.print(" and has an rvalue of ");  
  Serial.println(k, DEC);  

 When you run this version of the program, the output looks like that shown in Figure  8-5 . Notice that the 
code uses indirection to assign the value 10 into variable  k . As before, the indirection operator ( * ) instructs 
the code to go to the address pointed to by  ptrNumber  (the lvalue of  number ), fetch  int  bytes of data 
(i.e., 2 bytes holding the value 10), and copy those 2 bytes into the rvalue of  k . As a result, the rvalue for both 
 number  and  k  are the same. 

  Figure 8-5.    Using the indirection operator in an assignment statement       

 Surely you were paying close enough attention to Figure  8-5  to notice that the lvalues for  ptrNumber , 
 number , and  k  are different than shown in Figure  8-4 . What happened? While you were nodding off, I switch 
Arduino boards from an UNO with 2K of SRAM to an Arduino 2560 with 8K of SRAM … just to see if you’re 
paying attention. As a result, the stack addresses are much larger than on the UNO with its smaller SRAM. 
If you add another  Serial.println()  statement after  ptrNumber  has been initialized to point to  number , however, 
you would still find that its (garbage) lvalue changes from the 168 shown in Figure  8-5  to the lvalue of  number  
(i.e., 8692) .  It’s still quite likely that your actual numbers will be different, depending on the board you are using. 

 While we’re here, look at the lvalues for the variables. Now look at the order in which they are defined 
in Listing  8-1 :  number  is first to be defined (8692),  ptrNumber  is next (8690), and  k  is last (8988). Could it be 
that the compiler uses the stack mechanism discussed in Chapter   7     to allocate memory for these variables? 
Think about it.  

   Summary of Pointer Rules 
 Let’s take a moment and review the various rules you need to follow when using pointers. A pointer variable 
must be defined using an asterisk in the definition, such as 

  int *ptr;  

 

http://dx.doi.org/10.1007/978-1-4842-0940-0_7


CHAPTER 8 ■ INTRODUCTION TO POINTERS

175

 which defines a pointer that will be used with an  int  variable. The scalar of the pointer is determined at the 
time the pointer variable is defined. The pointer’s type specifier determines the scalar. The scalar is used to 
determine how many bytes are to be manipulated by the pointer.

•    A pointer never points to anything useful until it is initialized. The address-of 
operator is used to initialize a pointer with the lvalue of what is being pointed to: 

  ptr = &myVariable;   

•   The address-of operator ( & ) causes the lvalue of the variable ( myVariable ) to be 
fetched, and that value is then assigned to the rvalue of the pointer variable ( ptr ).  

•   After a pointer is initialized, you can use indirection to change the rvalue of the 
variable being pointed to. Therefore, the statements 

  int myVariable;  
  int *ptr;  
  ptr = &myVariable;  
  *ptr = 10;     

 have the effect of assigning the value 10 into  myVariable  using the indirection operator ( * ) 
and  ptr . 

 You can also read the value being pointed to using the indirection operator, as in the statement: 

  Serial.print(*ptr);  

 This statement would print the value 10 on the serial display device.    

     Why Are Pointers Useful? 
 In Chapter   6     you saw that functions cannot change the value of an argument passed to it because, by default, 
function arguments are pass-by-value data items. That is, temporary copies of the arguments are passed 
to the function, not the arguments themselves. This also means that the function knows nothing about the 
lvalues of the actual variables being used; only their rvalues. Because the arguments are copies, the lvalue 
of the original variable is not available, which means a function cannot change the value of the original 
variable being passed to it in your backpack. 

 However, what if you need the function to change the value of the argument? This is often the case 
when you need to change two or more values in the function code. True, you can return one value from the 
function, but you want the function to change more than one value. No problem, use a pointer. 

 For example, suppose you have a temperature sensor that reads the temperature every hour and 
records the value in an array named  temps[] . At the end of the day, you want to read the 24 values and record 
the minimum and maximum temperatures for the day. Something like the following code fragment would 
do the job. The source code is found in Listing  8-2 . 

       Listing 8-2. Minimum and Maximum Temperature Program 

  /*  
     Purpose: find the minimum and maximum values of an array of  
    data values  

    Dr. Purdum, Nov. 22, 2014  
   */  

http://dx.doi.org/10.1007/978-1-4842-0940-0_6


CHAPTER 8 ■ INTRODUCTION TO POINTERS

176

  #include <stdio.h>  
  #define READINGSPERDAY 24  
  #define VERYHIGHTEMPERATURE 200  
  #define VERYLOWTEMPERATURE -200  

  int todaysReadings[] = { 62, 64, 65, 68, 70, 70, 71, 72, 74, 75, 76, 78,  
  79, 79, 78, 73, 70, 70, 69, 68, 64, 63, 61, 59};  

  void setup() {  
    int lowTemp;  
    int hiTemp;  
    int retVal;  

    Serial.begin(115200);  

    Serial.println("=== Before function call:");  
    Serial.print("The lvalue for lowTemp is: ");  
    Serial.print((long) &lowTemp, DEC);  
    Serial.print(" and the rvalue is ");  
    Serial.println((long) lowTemp, DEC);  
    Serial.print("The lvalue for hiTemp is: ");  
    Serial.print((long) &hiTemp, DEC);  
    Serial.print(" and the rvalue is ");  
    Serial.println((long) hiTemp, DEC);  

    retVal = CalculateMinMax(todaysReadings, &lowTemp, &hiTemp);  

    Serial.println("=== After the function call:");  
    Serial.print("The lvalue for lowTemp is: ");  
    Serial.print((long) &lowTemp, DEC);  
    Serial.print(" and the rvalue is ");  
    Serial.println((long) lowTemp, DEC);  
    Serial.print("The lvalue for hiTemp is: ");  
    Serial.print((long) &hiTemp, DEC);  
    Serial.print(" and the rvalue is ");  
    Serial.println((long) hiTemp, DEC);  
    Serial.println("\n");  
  }  
  void loop() {}  

  /*****  
         Purpose:  Get the daily temperature reading (READINGSPERDAY) and     set the minimum 

and maximum temperatures for the day.  

         Parameter list:  
          int temps[]      the array of temperatures  
              int         *minTemppointer to the minimum temperature value  
              int         *maxTemppointer to the maximum temperature value  

        Return value:  
              int         the number of readings processed  
  *****/  



CHAPTER 8 ■ INTRODUCTION TO POINTERS

177

  int CalculateMinMax(int temps[], int *minTemp, int *maxTemp)  
  {  
     int j;  
     *minTemp = VERYHIGHTEMPERATURE ; // Make the min temp ridiculously high  
     *maxTemp = VERYLOWTEMPERATURE;   // Make the max temp ridiculously low  
     for (j = 0; j < READINGSPERDAY; j++) {  
         if (temps[j] >= *maxTemp) {  
             *maxTemp = temps[j];  
         }  
         if (temps[j] <= *minTemp) {  
             *minTemp = temps[j];  
         }  
      }  
      return j;  
  }   

 The  CalculateMinMax()  function has three parameters: An  int  array of temperature readings and two 
 int  pointers that store the minimum and maximum temperatures for the data passed to the function. 

 Now note how the function is called from within the  setup  ()  function: 

  retVal = CalculateMinMax(temps, &lowTemp, &hiTemp);  

 The first argument is the  temps[]  array that holds the 24 temperature readings. It is important to note 
that when you use an array name “by itself” (temps, no array brackets after it), you are referencing the 
lvalue of the array. This is because arrays are reference types rather than value types. In fact, you can write 
the function declaration for  CalculateMinMax()  as either the way it is shown in Listing  8-2  (note the use of 
brackets for temps in the first instance, but not the second as shown by the shaded areas): 

  int CalculateMinMax(int temps[], int *minTemp, int *maxTemp)  

 or as 

  int CalculateMinMax(int *temps, int *minTemp, int *maxTemp)  

 The interpretation of  temps  in either signature is the same to the compiler … it’s an lvalue. The reason is 
because the call to  CalculateMinMax()  uses the name of the array by itself without brackets, which evaluates 
to the lvalue of the array.… 

 Going back to the function call to  CalculateMinMax()  in  setup() , notice that the next two arguments 
after  temps[]  are the  int  variables  minTemp  and  maxTemp . Because you want the function to permanently 
change these values within the function, the function needs to know where these variables live in memory. 
This means you must send the lvalue for both variables to the  CalculateMinMax()  function . Passing the 
lvalue instead of the rvalue changes the default argument behavior for a variable from pass-by-value to pass-
by-reference. Placing the address-of operator  ( & )  before the variable names switches the two variables from 
pass-by-value to pass-by-reference.  

 If you think about it, the call in  setup()  

  retVal = CalculateMinMax(temps, &lowTemp, &hiTemp);  

 has the effect of making the function signature to behave as though it were written as: 

  int CalculateMinMax(int temps[], int *minTemp = &lowTemp, int *maxTemp =     &hiTemp)  



CHAPTER 8 ■ INTRODUCTION TO POINTERS

178

 Breaking out the last two parameters from the signature should look familiar: 

  int *minTemp = &lowTemp;  
  int *maxTemp = &hiTemp;  

 These two statements are the syntax you would use to initialize two pointers to the  lowTemp  and 
 hiTemp  variables back in  setup() . In other words, pass-by-reference using the address-of operator ( & ) back in 
 setup()  has exactly the same effect as initializing the two parameters in  CalculateMinMax()  as pointers to  int  
variables. A sample run of the code in Listing  8-2  is shown in Figure  8-6 .  

  Figure 8-6.    Sample run of the MinMaxTemperature program       

 In Figure  8-6 , you can see that the lvalue for  lowTemp  is 8682 and  hiTemp  is 8680. (Why are the lvalues 
two bytes apart? Answer: Because  int s use two bytes of storage.) You can also see that the rvalues for the two 
variables are different because they reflect whatever random bit pattern existed at those memory addresses 
when the program began execution. After the call to  CalculateMinMax() , you can see their lvalues are still 
the same, but the temperatures have been assigned to the proper values by the function. Clearly, this means 
you were able to change the variables back in  setup()  using pointer indirection even though both variables 
are out of scope within  CalculateMinMax().  This would not be possible without using pointers. Take a little 
time to study Listing  8-2  to be sure you understand how pointers allow you to change rvalues for variables 
that are out of scope. 

 The program shows another advantage of pointers. Recall that using an array name by itself as a 
function argument is the same as passing the lvalue for that array to the function. Suppose the array of 
temperatures was for ten days instead of one day. If the compiler could not simply pass the array name, it 
would have to use the stack mechanism discussed in Chapter   7     and push 240  int  values onto the stack, thus 

 

http://dx.doi.org/10.1007/978-1-4842-0940-0_7


CHAPTER 8 ■ INTRODUCTION TO POINTERS

179

consuming 480 bytes of stack space. Also, those same 480 bytes would have to be popped back off the stack 
by the code in the function. These pushing and popping instructions take time to say nothing about chewing 
up a huge chunk of SRAM in the process. By using call-by-reference, you can use arrays as if they were 
pointers and save both time and memory in the process.  

     Modified Blink Program 
 Let’s take the Blink program that is distributed with the IDE and modify it to use a pointer. This is a contrived 
example, but it may help you to see what’s going on when you use a pointer. The code is presented in Listing  8-3 . 

   Listing 8-3. Modified Blink Program 

  /*  
    Blink  by Scott Fitzgerald  

    Modified by:  
    Dr. Purdum, 12/19/2014  
   */  

  #define LED   13  

  // the setup function runs once when you press reset or power the board  
  void setup() {  
    // initialize digital pin 13 as an output.  
    pinMode(LED, OUTPUT);  
  }  

  /*****  
    Purpose: To blink the onboard LED using a pointer  

    Parameter List:  
      int pinthe pin attached to the LED  
      int *whichStatea pointer to the state variable back in loop()  
    Return value:  
      n/a  
  *****/  
  void  BlinkLED(int pin, int *whichState)  
  {  
    digitalWrite(pin, *whichState);   // turn the LED on (HIGH is the voltage level)  
    delay(1000);                      // wait for a second  
    *whichState = !(*whichState);     // Change state  
  }  

  void loop() {  
    static int state = HIGH;   // State of LED  
    BlinkLED(LED, &state);     // Call function  
   }   

 Most of the code should look pretty familiar to you. In  loop(),  we define  state  with the  int  type specifier, 
but also use the  static  storage specifier. This means that the first line of code in  loop()  is only evaluated once. 
It is not processed on each pass through  loop() . The code then calls  BlinkLED() , which is a simple function 
to perform a d igitalWrite()  of the LED pin. However, note that we are sending the lvalue of  state  to the 



CHAPTER 8 ■ INTRODUCTION TO POINTERS

180

function, not a copy of  state ’s value. This means we are using pass-by-reference, not pass-by-value. As such, 
we define the second parameter to  BlinkLED()  as a pointer, since we have an lvalue, not an rvalue. Anytime 
we need  state ’s rvalue in  BlinkLED() , we’ll need to use the indirection operator ( * ). Because we initialized 
 state  to HIGH when we defined it, the first call to  BlinkLED()  turns the LED on. 

 In the function call to  BlinkLED() , the code turns on the LED and then executes the statement: 

  *whichState = !(*whichState);  // Change state  

 What? Anytime you see a “busy” statement like this used in an assignment, just break it down to its 
simplest form. Because the expression on the right side of the assignment statement must be resolved first, 
and parentheses force us to evaluate whatever is contain within them first because parentheses have the 
highest precedence of all operators, we evaluate  *whichState  first. We know the state is  HIGH  because this 
is our first pass through  loop() . Therefore,  *whichState  causes us to use indirection to fetch variable  state,  
which is currently HIGH. Next we evaluate the NOT operator, which means the right-hand expression 
becomes NOT HIGH. The expression NOT HIGH evaluates to LOW. This means that the value LOW is 
assigned into  *whichState  using indirection. However, since  whichState  is a pointer to  state  back in  loop() , it 
is the value of  state  that actually gets changed by the assignment statement in  BlinkLED() . 

 Why did we have to use the parentheses in the pointer assignment in the  BlinkLED()  function? Actually, 
we don’t. If you look at the Precedence Table in Chapter   4    , you will find that the NOT and indirection 
operators have the same precedence level. Whenever there are ties in precedence, most of the operators 
are  left-associative , which means the tie is evaluated in the expression by reading the operators from left to 
right. In our statement, the result is the same. So, why did I use the parentheses if they are not required? The 
reason is because it better documents what my intention is for the statement. Once again, it makes it easier 
to understand what the expression does and that’s a good thing. 

 I urge you to type this short program in and study the code until you are sure you understand what’s 
going on. It will pay benefits down the road.  

     Pointers and Arrays 
 As you may have guessed, there is an intimate relationship between pointers and arrays. Listing  8-4  shows a 
simple program that displays the content of a character array. 

     Listing 8-4. Display Character Array 

  /*  
    Purpose: Display a character array using array indexes  

    Dr. Purdum, Nov 22, 2014  
    */  

  void setup() {  
    char greet[6];  
    int i;  

    Serial.begin(9600);  

    greet[0] = 'H';   // Initialize the array with some characters  
    greet[1] = 'e';   // the slow way...  
    greet[2] = 'l';  
    greet[3] = 'l';  
    greet[4] = 'o';  
    greet[5] = '\0';  // null termination character  

http://dx.doi.org/10.1007/978-1-4842-0940-0_4


CHAPTER 8 ■ INTRODUCTION TO POINTERS

181

    for (i = 0; i < 5; i++) {  
      Serial.print(greet[i]);   // Change this statement  
    }  
  }  
  void loop() {}   

 When you run this program, the output is simply “Hello”. To do that, you used the array indexes to 
march through the character string. Now change the statement in the  for  loop of Listing  8-4  to 

  Serial.print(*(greet + i));  

 and compile, upload, and run the program. What happens to the output? Absolutely nothing. The program 
still displays “Hello”. 

 Now try changing the same statement to: 

  Serial.print(*(greet + i * sizeof(char)));  

 Does the output change? Nope, it’s still the same. The reason is because each variation makes use of the 
fact that using  an array name by itself is the same as using the lvalue of the array . 

 Consider Figure  8-7 .  

 2200  2202

 2201

H e l l o ‘\0’

 2203  2205

 2204

  Figure 8-7.    The greet[] array in memory       

 Assume that the  greet  array is stored starting with memory address 2200 (i.e., its lvalue is 2200). Now 
look at the statement: 

  Serial.print(*(greet + i));  

 On the first pass through the loop, because  i  is 0, the statement resolves to: 

  Serial.print(*(greet + 0));  
  Serial.print(*(2200 + 0));  
  Serial.print(*(2200));  

 The indirection operator simply says to go to memory address 2200 and fetch the character found there. 
This is the letter H. On the second pass through the  for  loop, the statement resolves to 

  Serial.print(*(greet + 1));  
  Serial.print(*(2200 + 1));  
  Serial.print(*(2201));  

 and the indirection operator fetches the letter e. The process repeats until the loop ends, at which time the 
word Hello is on the display. 

 



CHAPTER 8 ■ INTRODUCTION TO POINTERS

182

 The second variation of the statement is: 

  Serial.print(*(greet + i * sizeof(char)));  

 The  sizeof()  operator returns the number of bytes required to store the data type enclosed by its 
parentheses. From Table   3-1     you know that a  char  requires 1 byte for storage in memory. Therefore, the 
statement resolves to 

  Serial.print(*(greet + i * 1));  
  Serial.print(*(greet + 0 * 1));  
  Serial.print(*(2200 + 0));  
  Serial.print(*(2200));  

 and the H is displayed. For the second pass, the statement resolves to: 

  Serial.print(*(greet + i * 1));  
  Serial.print(*(greet + 1 * 1));  
  Serial.print(*(2200 + 1));  
  Serial.print(*(2201));  

 and the e is displayed. You should be able to figure out the rest of the sequence. 
 This exercise should convince you that using the array name  greet  is the same as the lvalue of the  greet[]  

array. Now add the following pointer definition to  setup()  and change the  for  statement, as shown in the 
following code fragment: 

  void setup() {  
    char greet[6];  
    char *ptr;  
    int i;  

    Serial.begin(9600);  
    greet[0] = 'H';  
    greet[1] = 'e';  
    greet[2] = 'l';  
    greet[3] = 'l';  
    greet[4] = 'o';  
    greet[5] = '\0';  

    ptr = greet;              // Initialize the pointer  
    for (i = 0; i < 5; i++) {  
      Serial.print(*ptr++);   // Change this statement...  
    }  
  }  

 Once again, the program behaves exactly as before. The statement 

  ptr = greet;  

 takes the lvalue of  greet  and places it into the rvalue of  ptr . To the compiler, because the name of an array 
is the same as the lvalue of the array, you don’t need to use the address-of operator ( & ) as you did with the 
temperature variables in Listing  8-2 . (In fact, if you did try to use the address-of operator, the compiler issues 

http://dx.doi.org/10.1007/978-1-4842-0940-0_3#Tab1


CHAPTER 8 ■ INTRODUCTION TO POINTERS

183

an error message.) The statement essentially does exactly the same thing as shown in Figure  8-4 . It initializes 
 ptr  to point to the  greet[]  array. In the  for  loop, the statement 

  Serial.print(*ptr++);   // Change this line in 8.5 in for loop  

 uses the indirection operator ( * ) to fetch the content of  ptr  and display it. Since  ptr  equals 2200, the letter 
H is displayed. Because you used a post-increment operator on  ptr , on the next pass through the loop, the 
indirection is performed on memory address 2201 and the letter e is displayed. As you can see, all three 
variations of the program produce the same results. 

 Let’s make another modification: 

    while (*ptr) {            // This replaces the for loop  
      Serial.print(*ptr++);   // Change this line in 8.5 in for loop  
    }  

 Now what happens? In this case, the  while  expression fetches what  ptr  points to (H), and if it is non-
zero, it executes the  Serial.print()  call. This continues until the  ptr  points to the  null  at the end of the array. 
Because this evaluates to logic false, the loop ends. In other words, it works exactly at before. 

 What would happen if you completely got rid of the  for  loop and just used the statement: 

  Serial.print(greet);  

 Once again, the program works exactly the same as before. The reason is because now we are treating 
the character array as a  string  data type. (Do not confuse “string” with “String”. The uppercase S refers to 
the  String  class while a lowercase s refers to a string built up from a character array.) By terminating the 
sequence of characters with the  null  termination character ( '\0' ) as you did when the string was initialized, 
you can treat the character array as a string. That is, the  serial.print()  function gets the lvalue of the  greet[]  
array, but can process it as though it is a string because of the  null  termination character. If you forget to 
add the  null  character to the  greet[] , no problem. The  Serial.print()  function will just keep spinning through 
memory displaying whatever junk it finds until it reads a byte with the value 0. Comment out the last 
initialization byte and give it a try. My program only displayed about three bytes of junk before it stopped 
printing. Your results may be different. 

 Note the number of different ways that C allows you to accomplish the same task; in this case, printing 
out a short message. So, which is the “best” way to work with a string? As it turns out, the compiler is smart 
enough to generate virtually the same code whether you use pointer notation ( *ptr ) or array notation 
( greet[] ). If you are interviewing for a job or pontificating at a cocktail party, you’d probably use pointer 
notation. If you’re writing code for a programmer who is still has his training wheels strapped on, use the 
array notation. Some shops have standards about such things and you may not have a choice. If you do have 
a choice, use whatever makes the most sense to you. 

     The Importance of Scalars 
 Let’s make some minor changes to the program shown in Listing  8-5 . However, notice that  greet[]  is now an 
 int  array, not a  char  array, and it initialized with numbers rather than characters. 

     Listing 8-5. Using an int Array 

  /*  
    Purpose: Display an int array using array indexes  

    Dr. Purdum, Mar. 11, 2015  
   */  



CHAPTER 8 ■ INTRODUCTION TO POINTERS

184

 2200  2204

 2202

0 1 2 3 4 5

 2206  2210

 2208

  Figure 8-8.    The greet[] array in memory when stored as an int       

  void   setup  () {  
    Serial  .begin(9600);  

    int greet[6];  // Notice this is an int now  
    int *ptr;      // ...as is this  
    int i;  

    greet[0] = 0;  // Numbers now...  
    greet[1] = 1;  
    greet[2] = 2;  
    greet[3] = 3;  
    greet[4] = 4;  
    greet[5] = 5;  

  Serial  .print("Using 'Serial.print(greet[i]);'   ");  
    for (i = 0; i < 5; i++) {  
       Serial  .print(greet[i]);     //  Flavor #1  
    }  
  Serial  .println();  

  Serial  .print("Using 'Serial.print(*(greet + i));'   ");  
    for (i = 0; i < 5; i++) {  
       Serial  .print(*(greet + i)); //  Flavor #2  
    }  
  Serial  .println();  

  Serial  .print("Using 'Serial.print(*ptr++);'   ");  
    ptr = greet;  
    for (i = 0; i < 5; i++) {  
       Serial  .print(*ptr++);       //  Flavor #3  
    }  
  }  
  void   loop  () {}   

 If you run the program, it displays 01234. ( Expression2  of the  for  loop prevents the last element from 
being displayed.) If we look at the memory map for the integer version of greet, it has changed to that shown 
in Figure  8-8 .  

 Notice how the offset from the greet lvalue (2200) is always  two bytes  now rather than one. Obviously, 
this is because an  int  takes twice as much storage as a  char . However, how does the math work out for the 
statement within the  for  loop: 

  Serial.print(greet[i]);  

 



CHAPTER 8 ■ INTRODUCTION TO POINTERS

185

 This seems like it should resolve as 

     Serial.print(greet[i]);  
     Serial.print(greet + i);  
     Serial.print(2200 + 0);  
     Serial.print(2200);  

 which does align with the first number in the array. But, what happens on the next pass when  i  = 1? 

     Serial.print(greet[i]);  
     Serial.print(greet + 1);  
     Serial.print(2200 + 1);  
     Serial.print(2201);  // Uh-oh?  

 This is  not  the lvalue for the second value in the array. What went wrong? 
 Actually, nothing went wrong, because that’s not how the compiler does the offset math. Any time the 

compiler calculates an offset from an array’s base lvalue,  it scales the offset by the scalar for the data type . To 
prove this, try the second variation you tried, but for an  int . 

    Serial.print(*(greet + i));   // New line for Listing   8-5  
                                     which acts like it is written:  
    Serial.print(*(greet + i * scaler);  
    Serial.print(*(greet + i * sizeof(int)));  
    Serial.print(*(greet + i * 2);  
    Serial.print(*(2200 + 1 * 2);  
    Serial.print(*(2202));        // Taa-daa! The lvalue when i = 1  

 This works just fine, since 2202 is the lvalue for the second element of the array. 
 If you try the pointer version using the statement 

  Serial.print(*ptr++);  

 it also works just fine because  all pointer math is also scaled to fit the underlying data type . In this case, any 
increment increases the offset by 2 because the scalar is 2 (each  int  requires two bytes of memory). You can 
alter the data type use in the program and you’ll find the compiler adjusts the scalar for you automatically.  

     Pass-by-Value vs. Pass-by-Reference 
 We want to prove that there is a difference between pass-by-value and pass-by-reference. Consider the 
program in Listing  8-6 . 

   Listing 8-6. Pass-by-Value 

  void setup() {  
    // put your setup code here, to run once:  
    Serial.begin(9600);  
    int number = 10;  

    Serial.print("lvalue for number is ");  
    Serial.print((int) &number);  
    Serial.print(" rvalue for number is ");  



CHAPTER 8 ■ INTRODUCTION TO POINTERS

186

    Serial.println(number);  
    SquareIt(number);  
    Serial.print("After call: rvalue for number is ");  
    Serial.println(number);  
  }  

  void loop() {}  

  void SquareIt(int temp)  
  {  
    Serial.print("In SquareIt(), lvalue for temp is ");  
    Serial.print((int) &temp);  
    Serial.print("  rvalue for temp is ");  
    Serial.println(temp);  
    temp *= temp;  
    Serial.print("The new rvalue for temp is ");  
    Serial.println(temp);  
  }   

 When you run this program, the output is as shown in Figure  8-9 . Note that the lvalue of number in 
 setup()  is 8694 and its rvalue is 10. (We have to cast & number  to an  int  because the  Serial.print()  method 
doesn’t know how to print a memory address.)  

  Figure 8-9.    Sample run of pass-by-value       

 



CHAPTER 8 ■ INTRODUCTION TO POINTERS

187

 The code then calls the  SquareIt()  function, passing  number  to the function using the stack mechanism 
(i.e., backpack) discussed in Chapter   6    . Inside the  SquareIt()  function, we display the lvalue of  temp , the 
variable that received the copy of number from  setup() . Clearly, because the lvalue of  temp  is 8687 while the 
lvalue of  number  back in  setup()  is 8694, they are two totally different variables. We know this because their 
lvalues are different even though their rvalues are the same … they live in different parts of memory. The code 
then squares  temp  and shows its value is 100. Upon return from  SquareIt() , we display the rvalue of  number  
again to show that it is still 10, not 100. Clearly, we are passing a value to the function, not the variable itself. 

 Now, let’s make a few changes to Listing  8-5  to make it pass-by-reference. Change the following 
statement in  setup()  from: 

    SquareIt(number);  

 to 

    SquareIt(&number);  

 Note how we have changed it to pass the lvalue of number by using the address-of ( & ) operator instead 
of the rvalue of  number . We changed the  SquareIt()  function enough; I’ll just present it here. 

  void SquareIt(int *temp)  
  {  
    Serial.print("In SquareIt(), lvalue for temp is ");  
    Serial.print((int) &temp);  
    Serial.print("  rvalue for temp is ");  
    Serial.println((int) temp);  
    *temp = *temp * *temp;  
    Serial.print("The new rvalue for temp is ");  
    Serial.println(*temp);  
  }  

 After you make the changes to the source code, recompile, upload, and run the program. The output is 
shown in Figure  8-8 . Note that the lvalue of number in  setup()  is still 8694 and its rvalue is 10. 

 The code then uses the address-of operator ( & ) before the argument  number  when it calls the  SquareIt()  
function. This means we are sending the lvalue of  number  to the function,  not  a copy of its rvalue. In other 
words, even though  number ’s scope is limited to the  setup()  function,  SquareIt()  now knows where  number  
lives in memory. Think about what this means. We have “hidden”  number  within  setup()  but have made 
it “indirectly” available to  SquareIt()  because we can use that lvalue as a pointer. We have encapsulated 
 number  in  setup() , but made  number  available to  SquareIt()  by using pass-by-reference. Reread this 
paragraph until it makes sense. 

 We can prove all of this just by looking at Figure  8-8 . Inside  SquareIt() , we can see that temp lives at 
memory address 8687. The rvalue for temp is 8694. 

 Wait a minute! On my system, the lvalue of  number  is 8694 and the rvalue for  temp  is 8694. This is similar 
to what you saw in Figure  8-4 ! Just substitute  temp  for  ptrNumber  and change the lvalue/rvalue pairs and you 
have a picture of how things are now in  SquareIt() . To get  number ’s rvalue, we have to use the indirection 
operator ( * ) on  temp  to get the value of  number  (10) as it appears in  setup() . Then we execute the statement: 

   *temp = *temp * *temp;  

 What the … ?? This makes sense if we break it down like the compiler would: 

   *temp = *temp * *temp;  
   *temp = (*temp) * (*temp);  

http://dx.doi.org/10.1007/978-1-4842-0940-0_6


CHAPTER 8 ■ INTRODUCTION TO POINTERS

188

     Your Turn 
 Now it’s your turn to provide a solution to a programming problem. Here’s the problem. 

 Using the two-LED circuit from Chapter   4    , Figure   4-1    , write a program that calls a function named 
 GetInput()  to acquire a single-digit number from the user via the  Serial  monitor. The numeric value from the 
user has the following interpretation: 

  0 = no LEDs lit  
  1 = LED1 lit  
  2 = LED2 lit  
  3 = both LED1 and LED2 lit  

 Any other entry by the user (i.e., “bad input”) should keep the LEDs in whatever their current state is. 
 GetInput()  has a function type specifier of int and the only two values to be returned are 0 on “bad input” or 

   *temp = 10 * 10;  
   *temp = 100;  

 What does this mean? Because  temp  is a pointer to an  int , the statement sends control to the memory 
address stored in  temp ’s rvalue (8694), makes a two-byte  int  with a value of 100, and shoves that new value 
into the two bytes starting at address 8694. This means we have changed the rvalue of  number  that “lives” 
(i.e., has scope) back in  setup() . The final call to  Serial.print()  back in  setup()  proves that  number  has been 
permanently changed by the call to  SquareIt() . Study the output shown in Figure  8-10  and then think about 
it. How cool is that!    

  Figure 8-10.    Program illustrating pass-by-reference       

 

http://dx.doi.org/10.1007/978-1-4842-0940-0_4
http://dx.doi.org/10.1007/978-1-4842-0940-0_4#Fig1


CHAPTER 8 ■ INTRODUCTION TO POINTERS

189

1 on “good input”. Another function named  LightLEDs()  is used to turn the two LEDs on /off according to the 
value entered by the user. Other than  setup()  and  loop() , you can only use the two new functions mentioned 
earlier. You are free to use any of the standard library functions. 

 At this point, I really hope you would sit down and try to draw up a program design of your own. If you 
do, you will learn much more than if you just read what follows. Give it a shot. 

     One Approach 
 Of course, the place to start is with Step 1 of the Five Program Steps. Step 1 is the Initialization Step, so what 
needs to be initialized? Well, since we are collecting input from the  Serial  monitor, we need to initialize the 
 Serial  object. Because there are two LEDs that are going to be used as indicators, we need to use  pinMode()  
to set their state to be OUTPUT. 

 Step 2 is the Input Step, and we know that we will be using the  Serial  monitor to get input from the 
user in a function that is to be named  GetInput() . Simple enough. However, what is not simple is how to 
get the information from the  GetInput()  function back to the caller. It’s a problem because the only thing 
that can be returned from the function is a 0 or 1 to indicate that a “good” or a “bad” value was entered 
by the user. That doesn’t leave us a means to return what the user entered (0 through 3 on “good” input) 
for subsequent steps. 

 Wait a minute! What if I pass a pointer to the  GetInput()  function as a function argument and let the 
user input set the value of the pointer in the function? That should work. 

 Step 3 is the Process Step, which in this case is to get the input from the user and determine which LEDs 
should be turned on (or off). Once we have determined the state the LEDs should have, Step 4, the Display 
Step, uses the  LightLEDs()  to display the LEDs. 

 We will assume that there is no Step 5, Termination Step, but rather the program will repeat itself to 
allow the user to enter another input value. Therefore, this will be our first program that actually uses the 
 loop()  function. At this point I hope you try to write your own solution before reading this one.  

     One Solution 
 First, consider the Initialization Step, as shown in the following code fragment: 

  #define LED1 11 // Which I/O pins are we using  
  #define LED2 10  

  void setup() {  
    Serial.begin(9600);// Serial object set with "No Line Ending"  

    pinMode(LED1, OUTPUT);  
    pinMode(LED2, OUTPUT);  
  }  

 We define two symbolic constants for the LEDs and the pins associated with each. Why not use pins 
0 and 1 instead of 10 and 11? The reason is because pins 0 and 1 are used to transmit and receive data 
by the USB connection. While you still could use pins 0 and 1 with artful programming that avoid RX/TX 
issues with the USB, why bother? We have plenty of unused pins, so it’s easier to use other pins. (We also 
avoid using pins 2 and 3, since they are the only external interrupt pins many of the Arduino boards make 
available.) Once the pins are chosen, we use them for the necessary initialization code to  setup() . The three 
statements simply activate the  Serial  object and perform the two  pinMode()  function calls to set the LEDs 
for OUTPUT. 



CHAPTER 8 ■ INTRODUCTION TO POINTERS

190

 Next, let’s look at the  loop()  function. As you know, the  loop()  function creates an infinite loop that 
never ends, unless power is removed, the board is reset, or there is a component failure. The following code 
fragment presents our  loop()  function code: 

  void loop() {  
    int goodBadFlag;  // Was the input good or bad?  
    int LEDValue;  

    Serial.println();  
    goodBadFlag = GetInput(&LEDValue);  
    Serial.print("flag = ");  
    Serial.print(goodBadFlag);  
    Serial.print("   LEDValue = ");  
    Serial.print(LEDValue);  
    LightLEDs(LEDValue);  
  }  

 The function body begins with the definition of two working variables. There are several calls to  Serial.
print()  that serve as debug code to help you see what’s going on. Using the  Serial  object is a common means 
for debugging (correcting) the program code. When you have the program fully debugged, removing the 
 Serial  object calls will decrease the code size. 

 Ignoring the  Serial  function calls, the first call is to  GetInput() , which is used to retrieve input from the 
user. The function code is as follows: 

  /*****  
    This function is used to get a numeric value from the user via the  
    Serial monitor. Valid input are the values 0 - 3.  

    Argument list:  
       int *whichthe value entered by the user  

    Return value:  
       int   0 if the value is bad, 1 if good  
  *****/  
  int GetInput(int *which)  
  {  
    char c;  
    int temp = -1;  
    *which = temp;  
    while (true) {  
     if (Serial.available() > 0) {  
      c = Serial.read();  
      if (isdigit(c)) {  // If they entered a digit character  
       temp = c - '0';  // Subtract ASCII zero from the digit character  
       if (temp >= 0 && temp < 4) {  // Is the value within range?  
        *which = temp;  
        return 1;// Yep, it's good  
       }  
      }  



CHAPTER 8 ■ INTRODUCTION TO POINTERS

191

      return 0;  // If we get here, it's bad input  
     }  
    }  
  }  

 The function has a single argument, which is an  int  pointer named  which . The code defines several 
working variables, setting  temp  equal to –1. The code then uses pointer indirection to also set  which  to –1. 
The code then creates an infinite  while  loop that waits for the user to supply some input from the  Serial  
monitor. The statement 

  if (Serial.available() > 0) {  

 continually monitors the  Serial  input stream to see if the user has supplied any input. Suppose the user 
presses the 2 key and clicks the Send button on the  Serial  monitor. The call to  Serial.read()  immediately 
moves the digit character 2 into the  char  variable named  c . The call to  isdigit()  using  c  as its argument is a 
standard library function that checks to see if the argument is a digit character. If  c  is not a digit character, 
zero is returned. If  c  is a digit character, non-zero is returned. Because we entered a “2” digit character, non-
zero is returned and the  if  test is logic true. 

 Recall that when you touch a key on the keyboard, its corresponding ASCII code is sent to the computer. 
For the “2” digit character, the ASCII code is 50. The ASCII code for 0 (zero) is 48. Therefore, the statement 

  temp = c - '0';// Subtract ASCII zero from the digit character  

 actually resolves to: 

  temp = 50 - 48;  
  temp = 2;  

 The statement, therefore, is a quick and easy way to convert the ASCII code for a digit character into 
a “real” integer number that is assigned into  temp . We then check  temp  to see if the value falls within our 
acceptable range of values (0 through 3, inclusive). If it is a valid  number  within our range, we use pointer 
indirection to assign  temp  into  which . Because it is an acceptable value, we return the value of 1 from the 
function call to  GetInput() . You should convince yourself that non-valid values or letters entered by the user 
end up returning 0 to the caller. Either way, program control returns to  loop().  

 Back in  loop(), goodBadFlag  is assigned the return value from the call to  GetInput() . However, note that 
 LEDValue  has been changed by pointer indirection in  GetInput()  and now holds the value entered by the 
user is the number entered was valid. After the function call, there are a bunch of debug statements that use 
the  Serial  object to help you see what’s going on. 

 The last statement in  loop()  is the call to  LightLEDs()  using  LEDValue  as its argument. The code 
fragment follows: 

  /*****  
    This function is used to illuminate the correct combinations of LED  
    according to the value of which  

    Argument list:  
        int combo key for lighting LEDs: 0=none, 1=LED1, 2=LED2, 3=both  

     Return value:  
        void  
  *****/  



CHAPTER 8 ■ INTRODUCTION TO POINTERS

192

  void LightLEDs(int combo)  
  {  
  switch(combo) {  
  case 0:            // both off  
    digitalWrite(LED1, LOW);  
    digitalWrite(LED2, LOW);  
    break;  
  case 1:            // 1 on, 2 off  
    digitalWrite(LED1, HIGH);  
    digitalWrite(LED2, LOW);  
    break;  
  case 2:            // 1 off, 2 on  
    digitalWrite(LED1, LOW);  
    digitalWrite(LED2, HIGH);  
    break;  
  case 3:            // both on  
    digitalWrite(LED1, HIGH);  
    digitalWrite(LED2, HIGH);  
    break;  
  default:  
    Serial.println("Control should never get here");  
    break;  
    }  
  }  

 You should be able to convince yourself that, with the value of 2 entered by the user,  LED1  is turned off 
and  LED2  is turned on. The  default  case is simply a catchall if the user entered a non-valid number. You could, 
of course, use a series of nested  if  statements instead of the  switch , but I think the  switch  is easier to read.  

     Debug Statements Using the Serial Object 
 Once you are convinced that the code is performing as wanted, you should remove the  Serial.print()  calls 
because they eat up memory that you may need for other uses. Perhaps the easiest way to do this is just to 
erase the statements from the code. While this works, what happens if you later unearth a bug and you need 
to put the debug statements back into the code? Well, you can always retype them back into the source code, 
but there’s an easier way. 

 Suppose at the very top of the source code file I add a new line: 

  #define DEBUG  

 and I change the code in  loop()  to: 

  void loop() {  
    int goodBadFlag;         // Was the input good or bad?  
    int LEDValue;  

  #ifdef DEBUG               // NOTE  
    Serial.println(" ");  
  #endif                     // ...end  

    goodBadFlag = GetInput(&LEDValue);  



CHAPTER 8 ■ INTRODUCTION TO POINTERS

193

  #ifdef DEBUG               // NOTE  
    Serial.print("flag = ");  
    Serial.print(goodBadFlag);  
    Serial.print("   LEDValue = ");  
    Serial.print(LEDValue);  
  #endif                     // ...end  

    LightLEDs(LEDValue);  
  }  

 Note the  #ifdef DEBUG  preprocessor directives. What these tell the compiler is that, if  DEBUG  is defined 
in this file, include all the statements up to the  #endif  directive. If  DEBUG  is not defined in this file, do not 
compile any of the statements between the two directives into the program. You can add the same set to the 
 Serial.begin()  call in  setup() . If you recompile the program, because we  #define d  DEBUG  at the top of the file, 
all of the  Serial.print()  calls get compiled into the program. 

 Now, comment out the  #define DEBUG  directive at the top of the file, but leave the other preprocessor 
directives untouched and recompile the program. What happens? Because  DEBUG  is no longer defined in the 
file, none of the  Serial.print()  calls get compiled into the program. On my machine, the code size dropped from 
2946 bytes to 2218 bytes by not including the debug code. If I need to reinstate the debug code later on, I just 
need to uncomment the  #define DEBUG  directive back in at the top of the source file. Kinda cool! You may hear 
this kind of debug code referred to as  scaffolding code  because it is used to surround the debug statements that 
serve as a safety net during the debug process, much like a scaffold protects the workers while building.   

     Summary 
 In this chapter you learned the hardest topic C can throw at you: pointers. You learned what pointers are 
and how to use the address-of and indirection operators to manipulate pointer data. You also learned 
how pointers are useful in overcoming local scope limitations when you want the function to permanently 
change a function argument. You also saw how pointers support the idea behind encapsulation because you 
can make local scope variables available to other non-local elements of the program. You also learned that 
pointers have a close relationship to the array data types. The sample programs in this chapter demonstrated 
that there are various ways to use pointers, but they are functionally equivalent. 

 There are a lot of new concepts in this chapter and you  must  master them before reading the next 
chapter. The next chapter adds more details about pointers and has a little more complexity. As such, it 
makes sense for you to spend enough time in this chapter before progressing to the next chapter. If you can 
do the exercises without error, you’re ready to move on. 

 EXERCISES

     1.    What is a pointer? 

 Answer: A pointer is a variable that, once initialized, has its rvalue initialized with the lvalue 
of another variable. Both the pointer and the matching variable must have the same data 
type specifier.  

    2.     What does a pointer enable the programmer to do that might not be possible 
otherwise? 

 Answer: Pointers allow functions to have direct access to data that would otherwise be 
out of scope. That is, pointers allow arguments to be passed by reference, thus giving a 



CHAPTER 8 ■ INTRODUCTION TO POINTERS

194

function the ability to permanently alter the rvalue of a variable that is not in scope. Pointers 
also allows arrays to be passed to functions in a more memory-efficient manner than pass-
by-value would permit.  

    3.    What does the address-of operator do and give an example? 

 Answer: The address-of operator ( & ) gives the code access to the lvalue of a data item. It is 
normally used to initialize a pointer. A typical use might be: 

  int val;  
  int *ptr;  

  ptr = &val;  

 Variable  ptr  now holds the lvalue of  val  and can change it through the process of 
indirection.  

    4.     What is the indirection operator ( * ) and what’s its purpose? Give an example of 
how it might be used. 

 Answer: The indirection operator is used by a pointer variable to access the rvalue of 
a different variable. To be used properly, the pointer must be initialized to point to the 
variable. For example: 

  int val;  
  int *ptr;  
  ptr = &val;  
  *ptr = 10;  

 This code fragment uses indirection via  ptr  to change  val  to 10.  

    5.    What is a pointer scalar and why is it important? 

 Answer: A pointer scalar refers to the byte magnitude that pointer operations are scaled. 
For example, if a pointer to  char  is incremented, the offset from the lvalue is increased by 1 
because that is the size of a pointer scalar for a  char  data type. However, if a pointer to  long  
is incremented, the offset is adjusted by 4 because each  long  uses 4 bytes of storage. 

 Suppose you needed to pass the value of the fifth element of an int array 
named  values  to a function named  func() . How would you write the code? 

 Answer: 

  func(values[4]);  

 The offset is 4 because of the N – 1 Rule for arrays. Bear in mind that this 
syntax is pass-by-value. That is, you are sending a copy of the value of the 
 values[]  array element to the function.  



CHAPTER 8 ■ INTRODUCTION TO POINTERS

195

    6.     The  GetInput()  function listed earlier has a small hiccup in it. What happens if 
the user enters –2 for input. You can guard against negative numbers as input 
by only using the absolute value of the number entered by the user. Correct the 
 GetInput()  function so it doesn’t accept negative numbers. 

 Answer: You need to do this one by yourself. However, I will tell you that the standard library 
provides a function named  abs() .  

    7.     Take the code in Listing  8-4  and compile the program using the various pointer 
methods discussed in the text. Write down the one that uses the least amount 
of memory and try to explain why you think it uses the least memory. 

 Answer: Interestingly, all have the same code size (1868 bytes) except for the version 
that uses the  while  loop (1852 bytes). This suggests that the compiler optimizes all the 
other forms to the same code. The  while  loop version does away with variable  i  and its 
manipulation in the program, which accounts for the difference.          



197© Jack Purdum 2015 
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming 
for the Arduino, DOI 10.1007/978-1-4842-0940-0_9

    CHAPTER 9   

 Using Pointers Effectively           

 This chapter is a continuation of Chapter   8    . In that chapter, you learned what a pointer is and how to 
manipulate them in expressions. In this chapter, you will learn

•    Valid pointer operations  

•   Pointer arithmetic  

•   Using pointers to functions  

•   The Right-Left Rule for deciphering complex data definitions  

•   Why using pointers can lead to more efficient code    

 When you have finished this chapter, you should be quite comfortable using pointers in your code. 

     Relational Operations and Test for Equality Using Pointers 
 Some C expressions make sense with almost any data type … except pointers. A partial reason this is true is 
because a pointer can only have two types of rvalues: a memory address or NULL. Any other type of data is 
going to result in an error of some form. Because the rvalue for pointers is thus constrained, some operators 
simply don’t make sense with pointers. Relational tests (e.g.,  >= ,  <= ,  > , and  < ) on pointers are acceptable only 
when both operands are pointers, and point to the same data. Therefore, 

  if (ptr1 < ptr2) {  
      ...  
  }  

 is acceptable  only  if both pointers  ptr1  and  ptr2  point to the same object, but 

  if (ptr1 > 10) {  
      ...  
  }  

 is not. This second form is unacceptable because the relational test is against a constant, not a pointer. 
You can use a cast to dispel the error message you get when using constants in pointer relational tests, but 
that’s almost never a good idea. The reason it is not a good idea is because it is unlikely that testing against 
a specific numerical memory address almost never makes sense because an lvalue is not known until 
run time. 

http://dx.doi.org/10.1007/978-1-4842-0940-0_8


CHAPTER 9 ■ USING POINTERS EFFECTIVELY

198

     Pointer Comparisons Must Be Between Pointers to the Same Data 
 You should not perform relational operations on two pointers if they do not point to the same data object. If 
you think about it, such comparisons simply don’t make sense. (An exception is checking a pointer to see if it 
is  null .) The problem, however, is that the Arduino C compiler does not catch this type of error. Consider the 
following code fragment: 

  char *ptr1;  
  char *ptr2;  
  char array[50];  
  char name[10];  

  ptr1 = array;  
  ptr2 = name;  
  if (ptr1 > ptr2) { // Some RDC...  
    //...  
  }  

 The  if  test on the pointers is nonsense and should be flagged as an error because you are comparing two 
pointers that point to different data objects. There is no way that two arrays occupy the same memory space. 
The Arduino C compiler, however, lets this code slide by. This can make debugging a pointer problem more 
difficult than it should be.   

     Pointer Arithmetic 
 Some forms of pointer arithmetic are allowed, others are not. Confusing them is simply begging the train to leave 
the rails. You performed pointer arithmetic in Chapter   8    , but probably didn’t think much about it. Now, let’s dig 
in and look closely at what happens when you use pointers in your code. Consider the code in Listing  9-1 . 

          Listing 9-1. Using Pointers 

  /*  
    Purpose: Illustrate pointer arithmetic  

    Dr. Purdum, Nov. 24, 2014  
   */  
  #include <string.h>  
  void setup() {  
    Serial.begin(9600);  

    char buffer[50];  
    char *ptr;  
    int i;  
    int length;  

    strcpy(buffer, "When in the course of human events");  

http://dx.doi.org/10.1007/978-1-4842-0940-0_8


CHAPTER 9 ■ USING POINTERS EFFECTIVELY

199

    ptr = buffer;  
    length = strlen(buffer);              // How many chars in quote?  
    Serial.print("The lvalue for ptr is: ");  
    Serial.print((unsigned int)&ptr);  
    Serial.print(" and the rvalue is ");  
    Serial.println((unsigned int)ptr);  
    while (*ptr) {  
      Serial.print(*ptr++);  
    }  
  }   
 void loop() { }

The first thing to notice is that we are including a header file named  string.h . (Actually, you could leave this 
preprocessor directive out and the compiler still compiles the program without error.) If you read  string.h  
with a text editor, you will find all kinds of functions designed to manipulate both strings and memory. (You 
should have looked at this header file as part of your reading of Chapter   6    .) Most of the function declarations 
you find in that header file are part of the System V Standard C Library that’s been around for decades. If you 
are interested in learning more about any given library function (e.g.,  memcmp ), just Google the function 
name, and you will get more than enough information about the function. 
(A  memcmp()  search turned up over 300,000 hits!) As stated before, search the libraries before writing your 
own functions. There’s a good chance that what you need has already been written. 

 One of the function declarations you will find in the  string.h  header file is 

  extern char *strcpy(char *, const char *);  

 which copies the characters pointed to by the constant character pointer that is the second parameter into the 
character array pointed to by the first parameter. (When used in this context,  const  means that the function should 
not alter the data pointed to by the second parameter. Because  strcpy()  knows the lvalue of the second parameter, 
it  could  alter its contents. The  const  qualifier tells the compiler not to let that happen.) Therefore, the statement 

  strcpy(buffer, "When in the course of human events");  

 simply copies the quotation into  buffer . 
 The statement 

  ptr = buffer;  

 simply initializes  ptr  to point to  buffer . That is, it copies the lvalue of  buffer  into the rvalue of  ptr . Remember 
that an array name by itself is the lvalue of the array (i.e.,  buffer  is the same as & buffer[0] ). Think about what’s 
been said thus far until you’re sure you understand what the last two sentences mean. 

 When you compile, upload, and run the program, your output for Listing  9-1  should look similar to that 
shown in Figure  9-1 .  

http://dx.doi.org/10.1007/978-1-4842-0940-0_6


CHAPTER 9 ■ USING POINTERS EFFECTIVELY

200

  Figure 9-1.    Output from pointer arithmetic program       

 You can tell from Figure  9-1  that  ptr  is stored at memory address 2242 and that  buffer  has an lvalue of 2244. 
The second line confirms that  ptr  does point to  buffer . The code then enters a  while  loop to display the contents 
of  buffer , using  ptr  to reference it. This is pretty much the same type of program you used in Chapter   8    . 

 Now, add the following lines of code to the program in Listing  9-1 , just before the closing brace of  setup() : 

  for (i = 0; i < length; i++) {  
    Serial.print(*(ptr + i));  
  }  

 Now run the program. The output when I ran the program is shown in Figure  9-2 .  

 

http://dx.doi.org/10.1007/978-1-4842-0940-0_8


CHAPTER 9 ■ USING POINTERS EFFECTIVELY

201

 What? What’s all of the garbage in Figure  9-2  that follows the word “events” all about? In other words, 
what is the following statement printing? 

  Serial.print(*(ptr + i));  

 This variation of the program using pointer arithmetic worked in the last chapter, but isn’t working here. Why? 
 To figure out the problem, look at the statement in Listing  9-1 : 

  Serial.print(*ptr++);  

 This is controlled by the  while  loop. Now ask yourself: Why did the  while  loop terminate? The reason the 
 while  loop terminated is because  ptr  had been incremented so that it pointed to the  null  termination character 
for the quotation as stored in  buffer . From the information in Listing  9-1  you know that  buffer  holds 34 characters 
plus one for the  null  character. When the  while  loop terminates, the rvalue for  ptr  must be 2277 (i.e., 2242 + 35) 
because you incremented  ptr  35 times in the  while  loop. As a result,  ptr  no longer points to the start of the quote, 
but to its  null  termination character because you have been incrementing the rvalue of pointer in the  while  loop. 
After the  while  loop, the program code then falls into the new  for  loop that you just added, and the statement 

  Serial.print(*(ptr + i));  

 resolves to 

  Serial.print(*(2277 + 0));  

 which attempts to display whatever junk is stored in memory  after  the quotation has been stored in the 
 buffer  array! This is going to be whatever garbage happens to be in SRAM at the memory location, starting 
with 2277. Trust me, this is a Flat Forehead Mistake every C programmer has made at one time or another. 

  Figure 9-2.    Output from pointer arithmetic program with for loop added       

 



CHAPTER 9 ■ USING POINTERS EFFECTIVELY

202

 So, what’s the fix? Very simple: reset the pointer any time you need to reuse it. In our case, add these 
lines before the new  for  loop code and run it again: 

  ptr = buffer;            // Reset the pointer back to buffer[0]...  
  Serial.println("");      // So the output prints on a new line  

 Now the output (as shown in Figure  9-3 ) is as expected.  

  Figure 9-3.    Program output after resetting ptr       

 Always remember: When you increment a pointer, it doesn’t automatically reset itself. 
 The statement controlled by the new  for  loop 

  Serial.print(*(ptr + i));  

 shows how addition is one form of pointer arithmetic that is allowed. You learned in Chapter   8     that all 
pointer arithmetic is scaled to fit the data being pointed to. In this example, the scalar for a  char  data type is 1 
byte, so each pass through the loop adds 1 to the rvalue of  ptr  and the code marches through the quotation. 
If  ptr  were pointing to  int  data, the expression 

  (ptr + i)  

 in the  Serial.print()  statement would add 2 to ptr on each pass because the scalar for an int is 2 bytes. 
Therefore, the arithmetic operation of pointer addition is permissible and is automatically scaled for the 
type of data being used. 

 

http://dx.doi.org/10.1007/978-1-4842-0940-0_8


CHAPTER 9 ■ USING POINTERS EFFECTIVELY

203

     Constant lvalues 
 You saw statements in Listing  9-1  that manipulated the pointer, as in 

  ptr = buffer;  

 and also the subexpression 

  ptr + i;  

 and both are perfectly acceptable expressions. The first statement simply initializes the pointer to point to 
the  buffer , whereas the second statement increments (adds one scalar unit) to the pointer. 

 Now, using the variable named  buffer  from Listing  9-1 , what happens when you try compiling the 
following statement? 

  buffer = buffer + 1;  

 The compiler gets a tad cranky and issues an error message. Why? Think about it. 
 You know that when an array name appears in a program statement by itself, it resolves to the lvalue 

of the array. Recall that it is the lvalue in the symbol table that allows the compiler to find where a data item 
resides in memory. The preceding statement, however, is attempting to change the lvalue by adding one 
to it. If the compiler allowed you to change the lvalue, there would be no way to find where that variable is 
stored in memory. Therefore, the compiler must issue an error message when any statement attempts to 
change the lvalue of a variable. You can add an offset to an lvalue to access the elements of an array, but you 
cannot directly change its lvalue. If you do try to change the lvalue of an array, you will get some form of 
error message telling you not to change “a constant lvalue.” Pointers can change rvalues, not lvalues.   

     Two-Dimensional Arrays 
 Two-dimensional arrays are often used in programming to present tabular data. You might, for example, have 
a fire alarm system with 10 sensors per floor in a three-story building. You could organize those sensors as 

  int myFireSensors[3][10];  

 which could be used to store the current state of each sensor on all three floors. Obviously, you could also 
write the array as: 

  int myFireSensors[10][3];  

 Most programmers think of the organization for two-dimensional arrays in a row-column format, so 
this latter definition is “ten rows of sensors by three columns of floors.” Which of the two forms is better? 
Doesn’t matter. Pick one that makes sense to you and use it. 

 Let’s write a short program that uses a two-dimensional array of characters. Although you could write 
the program as a simple array of Strings, we organize the data as  char’ s instead. The code is presented in 
Listing  9-2 . 



CHAPTER 9 ■ USING POINTERS EFFECTIVELY

204

        Listing 9-2. Using a Two-Dimensional Array of chars 

  /*  
    Purpose: To illustrate the relationship between two-dimensional  
      arrays and pointers.  

      Dr. Purdum, December 20, 2014  

    */  
  #define DAYSINWEEK 7  
  #define CHARSINDAY 10  

  static char days[DAYSINWEEK][CHARSINDAY] =  
       {"Sunday", "Monday", "Tuesday","Wednesday",  
        "Thursday", "Friday", "Saturday"};  

  void setup() {  
    int i, j;  
    Serial.begin(9600);   // Serial link to PC  
    for (i = 0; i < DAYSINWEEK; i++) {  
      Serial.print((int) &days[i][0]);  // Show the lvalue  
      Serial.print(" ");  
      for (j = 0; days[i][j]; j++) {  
        Serial.print(days[i][j]);    // Show each char  
      }  
      Serial.println();  
    }  
  }  
  void loop() {}   

 The character array is initialized by the statement: 

  static char days[DAYSINWEEK][CHARSINDAY] =  
       {"Sunday", "Monday", "Tuesday","Wednesday",  
        "Thursday", "Friday", "Saturday"};  

 The reason CHARSINDAY is set to 10 is because Wednesday is the longest day name, having nine characters. 
If you wish to view them as strings, you would need to define Wednesday with ten characters, or nine characters 
plus the  null  termination character. The result is a table with seven rows and ten columns of characters. 

 Why use the  static  storage modifier? Actually, the way the code is presented in Listing  9-2 , the  static  
modifier doesn’t play much of a role in the way the data are handled by the compiler. The biggest difference 
is that the data are not allocated on the stack. (The  static  modifier changes where it gets allocated in SRAM 
memory.) If you run the program, the output should look similar to that shown in Figure  9-4 . (I will have 
more to say about the  static  storage modifier in Chapter   14    .)  

http://dx.doi.org/10.1007/978-1-4842-0940-0_14


CHAPTER 9 ■ USING POINTERS EFFECTIVELY

205

 Another thing to keep in mind about data defined with the  static  storage modifier is that only a single 
instance of that data is ever defined, and it is defined at load time. For example, if you defined a  static  
variable in a function that is called a thousand times, the  static  variable is only created once and that’s 
when the program first starts. All thousand calls to the function share the same variable. That’s why  static  
data retain their values between function calls. Unlike variables that use the local storage class and are 
reallocated each time the function is called,  static  data hang around as long as the program is running. 

 In Listing  9-2 , nested  for  loops are used to display the contents of the array. The first  Serial.print()  call in 
the code 

  Serial.print((int) &days[i][0]);  // Show the lvalue  

 uses the address of operator to display where this particular element of the  days[][]  array is stored in 
memory. The second  Serial.print()  call simply prints a blank space. The  j  loop code 

    for (j = 0; days[i][j]; j++) {  
      Serial.print(days[i][j]);    // Show one char  
    }  
    Serial.println();  
  }  

  Figure 9-4.    Two-dimensional program run       

 



CHAPTER 9 ■ USING POINTERS EFFECTIVELY

206

 then displays each element of the array by using the  i  and  j  indexes. Note how  expression2  of the  for  loop 
is written. Why does  expression2  eventually cause the  j for  loop to terminate? (Hint: think about the  null  
termination character.) 

 If you look closely at Figure  9-4 , you will notice that the lvalue for each row is exactly 10 bytes more 
than the previous element. Obviously, the rows are stored “back-to-back” in memory. In my own mind, 
I visualize such arrays simply as a long sequence of bytes. In this example, I visualize it as a sequence of 70 
byte-sized blocks laid end to end. The second array dimension tells me how long each element is, or 10 bytes 
in this example. The first array dimension, 7, tells me where to “break” the blocks. Therefore, I mentally 
stack 7 chunks of memory one on top of the other, where each chunk is 10 bytes long. This forms a 7-row by 
10-column table of characters. 

 Also notice that the lvalues have relatively low memory addresses compared to the lvalues in  Figure  9-3 . 
Why? The reason is because the variables in Figure  9-3  were allocated off the stack, while the lvalues for the 
 days[][]  array has the  static  storage class and is not allocated off the stack. Instead, a chunk of memory referred 
to as the  heap  is where  static  and global variables are allocated in SRAM. While I’m bending the facts a little, 
it’s not too far off base to think of the stack as growing downward from the top of SRAM as local variables 
come into scope and variables allocated in the heap are found in low SRAM. If the two collide, you’re out of 
memory. 

     A Small Improvement 
 Although the code in Listing  9-2  works as designed, you can make a minor change and get slightly better 
code. The improvement involves moving the  days[][]  array from its current global access location outside 
of any function to inside the  setup()  function. This move changes the access from global to local access, 
which affords the data an improved degree of privacy because nothing outside of  setup()  now has access 
to the array. 

 You might be thinking: “Wait a minute! In Chapter   7     you stated that local variables are allocated on the 
stack in SRAM. Doesn’t this “improvement” increase the risk of running out of SRAM while the program 
runs?” To answer this question, move the definition of  days[][]  into the  setup()  function and recompile and 
run the program. What do you see? 

 Moving the  days[][]  array has no affect on the output of the program. Especially note that the lvalues do 
not change, which means the array hasn’t moved. How’s that possible now that  days[][]  is a local variable? 
The reason was just explained a few paragraphs ago. There is no change because data defined with the  static  
storage specifier are always defined in the heap section of SRAM. Still, this second version of the program 
is better because you have restricted the access to the array by outside agents, yet haven’t chewed up any 
more of the limited SRAM space. It is also important to know that, unlike local variables,  static  data are never 
reallocated once loaded. The  static  specifier assures you that the allocation only occurs once at load time.  

     How Many Dimensions? 
 Our sample program uses a two-dimensional array. Each dimension is called a  rank , so Listing  9-2  uses a 
rank 2 array. So, how many ranks does Arduino C allow you to use? Well … how many do you need? You might 
use a rank 3 array if you are doing 3D graphics, storing the coordinates for  x ,  y , and  z . If you’re writing a game 
where those graphics change in relation to time, you might use a rank 4 array. I’ve tried to think of a rank 5 

http://dx.doi.org/10.1007/978-1-4842-0940-0_7


CHAPTER 9 ■ USING POINTERS EFFECTIVELY

207

example and all I get is a headache. While I thought the old ANSI X3J11 spec stated a maximum rank of 256, I 
cannot find that limitation in print. I do know that the Arduino can compile a rank 5 array. I read where some 
theoretical physicists now believe there are 11 dimensions. If that makes sense to you, you probably don’t need 
this book. I can’t think of any reason to go beyond rank 4. If you need more, write the code and try to compile it. 
If it compiles, you should then send me a copy of the code … I need a good example of a rank N program.   

     Two-Dimensional Arrays and Pointers 
 Can you rewrite the code in Listing  9-2  to use pointers? Sure, but it takes a little more thought. The modified 
code appears in Listing  9-3 . 

     Listing 9-3. Modified Two-Dimensional Array Program to Use Pointers 

  /*  
    Purpose: To illustrate the relationship between two-dimensional  
      arrays and pointers.  

      Dr. Purdum, December 21, 2014  
    */  
  #define DAYSINWEEK 7  
  #define CHARSINDAY 10  

  void setup() {  
    Serial.begin(9600);  
  }  

  void loop() {  
    static char days[DAYSINWEEK][CHARSINDAY] =  
       {"Sunday", "Monday", "Tuesday","Wednesday",  
        "Thursday", "Friday", "Saturday"};  

    int i, j;           // Note the dual definitions in one statement  
    char *ptr, *base;   // Some programmers hate these. Your choice.  

    base = days[0];     // Different for N-rank arrays where N > 1  

    for (i = 0; i < DAYSINWEEK; i++) {  
      ptr = base + (i * CHARSINDAY);  
      Serial.print((int) ptr);       // Show the lvalue  
      Serial.print(" ");  
      for (j = 0; *ptr; j++) {  
        Serial.print(*ptr++);        // Show one char  
      }  
      Serial.println();  
    }  
    Serial.flush();  
    exit(0);  
  }   



CHAPTER 9 ■ USING POINTERS EFFECTIVELY

208

 The first thing to notice is that there are two  char  pointer variables now,  ptr  and  base . In the code,  ptr  
is used to march through the character array, while  base  is used to keep track of where the array begins in 
memory. Recall from the previous program that when you ran the program back-to-back without resetting 
the pointer, random garbage ended up being displayed. The  base  pointer is used in Listing  9-3  to prevent the 
same problem. 

 The next difference is how the  base  character pointer is initialized to point to the array. The statement 

  base = days[0];  

 is necessary because this is a rank 2 array. A one dimensional array resolves to a pointer to  char , so the name 
of the array  is  the lvalue for the array. However, with two-dimensional arrays, what you have is a pointer to 
an array, not a pointer to a pointer. For that reason, you need to show “rank - 1” array brackets. That is, if you 
have a rank 3 array, you would need to use  array[0][0]  in the pointer initialization. You could force the syntax 
using a cast, but that seems to be an artificial way to do it. 

 Inside the  for  loop controlled by variable  i , the statement 

  ptr = base + (i * CHARSINDAY);  

 initializes  ptr  to point to the element of the array that you wish to display next. Looking at Figure  9-4 , the 
 days[][]  array starts at memory address 258. Because you initialized  base  to point to the starting address 
of the first element of the array,  base  equals 258. So, on the first pass through the  i  loop, the expression 
resolves to 

  ptr = base + (i * CHARSINDAY);  
  ptr = 258 + (0 * 10);  
  ptr = 258 + 0;  
  ptr = 258;  

 which is exactly what we want. On the second pass through the  i  loop,  ptr  resolves to 

  ptr = base + (i * CHARSINDAY);  
  ptr = 258 + (1 * 10);  
  ptr = 258 + 10;  
  ptr = 268;  

 which agrees with the value displayed in Figure  9-4 . You should be able to convince yourself that each pass 
through the  i  loop results in an lvalue for  ptr  that is 10 bytes larger than the previous value … exactly as 
expected. Note that the base pointer is never changed. That’s because all of the calculations are indexed 
from the beginning of the array. 

 Inside the  for  loop controlled by variable  j , the statement 

  Serial.print(*ptr++);    // Show one char  

 simply causes the code to march through the array, displaying each character until the  null  termination 
character is read. When  ptr  has been incremented to the  null  termination character,  expression2  of the  for  
loop terminates (the loop code interprets the  null  as a logic false condition), and the  j  loop ends. An end-
of-line character is displayed, so the next display line appears on a new line. The program then increments 
variable  i  and the next pass through the  i  loop is made. The call to  Serial.flush()  makes sure that the  Serial  
buffer is cleared and the call to  exit(0)  causes the program to end. These two statements are not used very 
often in Arduino programs, but does show how to terminate a program from within  loop() . 



CHAPTER 9 ■ USING POINTERS EFFECTIVELY

209

     Treating the Two-Dimensional Array of chars As a String 
 If you just want to print the contents of the array as strings, you can simplify the program even more. Remove 
the two  for  loops and replace them with the following single loop: 

  for (i = 0; i < DAYSINWEEK; i++) {  
    Serial.println(days[i]);  
  }  

 If you compile and run this modified version of the program, the days of the week are displayed. How 
does that work? The operation of the program becomes clear when you realize (using the lvalues from 
Figure  9-4 ) where the starting bytes are located. That is, days[0][0] marks the “S” in “Sunday”: 

  days[0][0] = "Sunday";       // lvalue = 258  
  days[1][0] = "Monday"        // lvalue = 268  
  days[2][0] = "Tuesday";      // lvalue = 278  
  // more elements...  

 Therefore, each time variable  i  is incremented by 1, the compiler adds an offset to the base index of the 
array name (258) that is equal to the size of the second element size for the array (i.e., 10) times its scalar 
size. For a character array, the scalar is 1, so the offset is always 10. This is why the lvalue that is used to 
display the string is always 10 larger than the previous address. 

 What if the array is defined as the following? 

  float myData[5][10];  

 What is the scalar for each increment of  i  in? 

  for (i = 0; i < 5; i++) {  
    Serial.println(myData[i]);  
  }  

 Because the scalar for a  float  is 4, each increment on  i  advances the lvalue address by 40: 

  40 = sizeof(  float  ) * second element size  
  40 = 4 * 10  
  40 = 40  

 As an exercise, you could change the code in Listing  9-3  to work with the  float  data type and display the 
lvalues to verify this conclusion is correct.   

     Pointers to Functions 
 You can call a function via a pointer in C. As you will see, this can be very useful when a set of known 
tasks must be performed based upon specific values. But first, let’s see how to use a pointer to a function. 
Listing  9-4  shows the code for using a pointer to a function. 



CHAPTER 9 ■ USING POINTERS EFFECTIVELY

210

    Listing 9-4. Using a Pointer to Function 

  /*  
    Purpose: Show how to use a pointer to function  

      Dr. Purdum, December 21, 2014  
  */  

  void setup() {  
    Serial.begin(9600);  
  }  

  void loop() {  
    int number = 50;  
    int (*funcPtr)(int n);  // This defines a pointer to function  

    funcPtr = DisplayValue;  // This copies the lvalue of DisplayValue  
    number = (*funcPtr)(number);  
    Serial.print("After return from function, number = ");  
    Serial.println(number);  
    Serial.flush();  
    exit(0);  
  }  

  int DisplayValue(int val)  
  {  
    Serial.print("In function, val = ");  
    Serial.println(val);  
    return val * val;  
  }   

 Parts of Listing  9-4  look a little strange at first, but they do make sense. The first strange statement is: 

  int (*funcPtr)(int n);  // This defines a pointer to function  

 In the section titled “The Right-Left Rule” later in this chapter, you will learn a shortcut for deciphering 
complex data definitions. For now, however, this line simple states: “ funcPtr  is a pointer to a function that 
has a single  int  argument ( n ) and returns an  int  data type.” If the function did not have an argument, the 
definition would change to: 

  int (*funcPtr)();  // This defines a pointer to function with no arguments  

 If the function takes two  float  arguments but doesn’t return a value, the definition becomes: 

  void (*funcPtr)(float arg1, float arg2);  // Pointer to void function  

 As you can see, the type specifier for the function pointer is dictated by what the function’s return value 
is. The name of the pointer,  funcPtr , is preceded by the indirection operator so the compiler knows that a 
pointer is being defined. The surrounding parentheses mark the pointer as a pointer to function. The second 
set of parentheses groups the argument list for the function that will be pointed to. 



CHAPTER 9 ■ USING POINTERS EFFECTIVELY

211

 You’ve probably already figured out the next statement: 

  funcPtr = DisplayValue;  // This copies the lvalue of DisplayValue  

 This statement copies the lvalue of the function into  funcPtr . Just as a variable has a memory address 
where it resides in memory (i.e., its lvalue), so, too, does a function. 

 The next statement 

  number = (*funcPtr)(number)  

 calls the  DisplayValue()  function by using  funcPtr , passing the value of  number  to the function. The function 
itself does little else than display the current value of the value passed to it. The function does, however, 
square  number  and send it back to the caller as the return value for the function call. The return value is 
then displayed to show that the number was, in fact, squared by the function. A sample run of the program 
is shown in Figure  9-5 . As you can see in the figure, the number is squared during the function call and that 
value is returned to the caller. Again, we use the  Serial.flush()  and  exit(0)  calls to terminate the loop after one 
pass. You could, of course, just move the code into  setup()  and leave these two function calls out.  

  Figure 9-5.    Sample run of pointer to function program       

     Arrays of Pointers to Functions 
 Arrays of pointers to function may sound complicated, but it really isn’t. Indeed, arrays of function 
pointers is a very useful and efficient way to perform certain tasks. For example, suppose you have three 
processes that might be used depending upon the value returned from some other function call. Perhaps 
the function reads the temperature of a vat of candy. If the return value indicates the temperature is too 

 



CHAPTER 9 ■ USING POINTERS EFFECTIVELY

212

low, a function to continue heating the candy is called. If the return value is too high, another function 
turns off the heat, but continues to stir the candy so it will cool. When the temperature is “just right,” 
a third function is called that routes the candy to a series of molds. Listing  9-5  shows how you might 
simulate this process.  

     enum Data Type 
 Near the top of Listing  9-5  is a new data structure called an  enum  (i.e., enumerated) data type. The  enum  
syntax is: 

  enum NameOfEnum {enumMember List};  

 The  NameOfEnum  is the name (or tag) you wish to use for the enumeration and it follows the normal 
variable naming rules. The  enumMemberList  is a comma-separated list of the enumerated values that you wish to 
use. By default, the list is assigned values starting with 0 and is incremented by 1 for each member. For example, 

  enum days {SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY};  

 would associate 0 with SUNDAY, 1 for MONDAY, and 6 for SATURDAY. You can override the default  enum  
numbering by using explicit assignments, such as: 

  enum speeds {RESIDENTIAL = 35, STATEROAD = 55, FEDERALHIGHWAY = 70};  

 The member list names do not have to be in caps, but it is often done this way to reflect that the values 
are treated as constants in the program. 

 It is important to note that the preceding statements are  enum  data declarations, not  enum  definitions. 
To  define  an enumerated variable, you may use either of the following syntax forms: 

  enum days myDay;  
  enum SPEEDS {RESIDENTIAL = 35, STATEROAD = 55, FEDERALHIGHWAY = 70} mySpeed;  
  enum SPEEDS stateMax = STATEROAD;  

 The first statement assumes that an  enum  for  days  already has been declared in the code and defines an 
 enum  variable named  myDay . The second form combines the declaration of the  enum  with the definition of 
a  SPEEDS enum  named  mySpeed . Use whichever style you wish, but use it consistently. The last statement 
shows how to use the  enum  value in an assignment. 

 If you have this nagging sensation that  enum ’s seem to be the same as using a  #define , you’re almost 
right, but not quite. A  #define  is a textual substitution done during the preprocessor pass by the compiler. If 
you could look at the source code after the preprocessor pass, the tag associated with the  #define  is no longer 
present in the source code, only its associated value is present. As a result, there is no evidence of the  #define  
in the symbol table, either. That is, there is no traceable lvalue. 

 The  enum  is different in that it does create a variable that you can track in the program. This can make 
debugging easier using  enum ’s than if  #define ’s are used. Also, some people are more comfortable with 
 enum’ s because it uses a more familiar syntax that ends with a semicolon statement termination character. 

 In Listing  9-5 , an  enum  is used in conjunction with the candy vat temperatures. That is,  whichAction  
can only assume the enumerated values of 0 (TOOCOLD), 1 (TOOHOT), or 2 (JUSTRIGHT). The code uses 
 whichAction  to index into the array of function pointers. The program is long enough that you might find it 
useful to load it into the IDE and scroll through the code as you read the narrative about the program. 



CHAPTER 9 ■ USING POINTERS EFFECTIVELY

213

       Listing 9-5. Program Using an Array of Pointers to Functions 

  /*  
    Purpose: illustrate how you can use an array of pointers to  
      functions.  

    Dr. Purdum, December 21, 2014  
  */  

  enum temperatures {TOOCOLD, TOOHOT, JUSTRIGHT};  
  enum temperatures whichAction;  

  const int COLD = 235;  
  const int HOT = 260;  

  void setup() {  
    Serial.begin(9600);         // Serial link to PC  
    randomSeed(analogRead(0));  // Seed random number generator  
  }  

  void loop() {  
    static void (*funcPtr[])() = {TurnUpTemp, TurnDownTemp, PourCandy};  
    static int iterations = 0;  
    int temp;  

    temp = ReadVatTemp();  
    whichAction = (enum temperatures) WhichOperation(temp);  
    (*funcPtr[whichAction])();  

    if (iterations++ > 10) {  
      Serial.println("===================");  
      Serial.flush();  
      exit(0);  
    }  
  }  

  /*****  
    Purpose: return a value that determines whether to turn up heat, turn down heat, or if  
      vat is ready. Pourable candy is between 235 and 260.  

    Parameter list:  
      int temp      the current vat temperature  

    Return value:  
      int           0 = temp too cold, 1 = temp too high, 2 = just right  
  *****/  

  int WhichOperation(int temp)  
  {  
    Serial.print("temp is ");  
    Serial.print(temp);  



CHAPTER 9 ■ USING POINTERS EFFECTIVELY

214

    if (temp < COLD) {  
      return TOOCOLD;  
    } else {  
      if (temp > HOT) {  
        return TOOHOT;  
      } else  
        return JUSTRIGHT;  
    }  
  }  

  /*****  
    Purpose: simulate reading a vat's temperature. Values are  
      constrained between 100 and 325 degrees  

    Parameter list:  
      void  

    Return value:  
      int           the temperature  
  *****/  
  int ReadVatTemp()  
  {  
    return random(100, 325);  
  }  

  void TurnUpTemp()  
  {  
    Serial.println(" in TurnUpTemp()");  
  }  

  void TurnDownTemp()  
  {  
    Serial.println(" in TurnDownTemp()");  
  }  

  void PourCandy()  
  {  
    Serial.println(" in PourCandy()");  
  }   

 The  setup()  function establishes a serial link to the PC and the random number generator is seeded. 
Inside the  loop()  function, the statement 

  static void (*funcPtr[])() = {TurnUpTemp, TurnDownTemp, PourCandy};  

 is the heart of the program. This statement creates and initializes an array named  funcPtr  that is an array of 
pointers to functions. 

 As stated earlier, just like any other variable that is defined in a program, each function has an lvalue 
that marks where that function resides in memory. If something causes program control to branch to that 
memory location for the next program instruction, it is exactly the same as calling that function. 
In this particular example,  funcPtr[0]  holds the lvalue for the  TurnUpTemp()  function,  funcPtr[1]  holds the 



CHAPTER 9 ■ USING POINTERS EFFECTIVELY

215

lvalue for the  TurnDownTemp()  function, and  funcPtr[2]  holds the lvalue for the  PourCandy()  function. 
As you can see in Listing  9-5 , each of these functions simply displays a message saying that particular 
function was executed. This allows you to see which functions are visited as the program executes. Such 
“empty” functions are called  stubs  and are a commonly-used technique during the program development 
process. Figure  9-6  shows a sample run of the program. (Because the value for the temperature is generated 
randomly, it may take a while to see all three states appear on the  Serial  monitor.)  

  Figure 9-6.    Sample run of the array of pointers to functions program       

 The heart of the program centers on the following three statements: 

  temp = ReadVatTemp();  
  whichAction = (enum temperatures) WhichOperation(temp);  
  (*funcPtr[whichAction])();  

 The first statement calls the  ReadVatTemp()  function. We’ve coded the function to return a random 
number between 100 and 350 degrees. (Actually, almost any candy that has a temperature of 350 degrees 
is pretty much a block of carbon by then.) The random number is then returned from the function call and 
assigned into  temp . 

 The second statement takes the value of  temp  and passes it to  WhichOperation()  to determine if the 
temperature is too low, too high, or just right for pouring the candy into molds. The return value is then cast 
into the  enum  variable  whichAction  to determine which function should be called. 

 The third statement then calls the appropriate function by using  whichAction  as an index into the 
 funcPtr[]  array. Program control is then transferred to that function, which, in turn, displays its associated 
message. The dashed line is used to separate sets of runs should you press the  m c board’s reset button. 

 



CHAPTER 9 ■ USING POINTERS EFFECTIVELY

216

 Arrays of pointers to functions takes a little getting used to, but offers an elegant solution to many 
programming problems that involve calling specific functions depending upon a certain value. Years ago 
I saw a C implementation of the game Monopoly, where each square on the board was associated with 
a particular function. Those functions were organized as an array of pointers to functions, which greatly 
simplified the coding for the game. Pointers to function are particularly useful with automated process 
control situations. Keep the pointer-to-function concept tucked away in the back of your mind. Often it is the 
perfect solution to a given programming task.   

     The Right-Left Rule 
 What went through your mind when you first saw the following statement? 

  static void (*funcPtr[])() = {TurnUpTemp, TurnDownTemp, PourCandy};  

 Statements like this are called  complex data definitions  because they involve more than a simple data 
type specifier and a variable name. Let’s take this definition, remove the storage specifier (the initializer code 
that appears between the brackets), and just concentrate on what’s left: 

  void (*funcPtr[3]) ();  

 (I used 3 for the array size because that’s the number of functions that we wanted to use in Listing  9-5 .) 
The question is: What does this definition do? Alternatively, how can you verbalize this definition? Actually, 
it’s pretty simple when you use The Right-Left Rule that I developed over 30 years ago. 

 The Right-Left Rule says: locate the identifier in the definition (e.g.,  funcPtr ) and then you spiral your 
way out of the definition in a right-to-left fashion. Figure  9-7  shows the steps to follow to verbalize the 
definition. Step 1 says to find the name of the data item. In Figure  9-7 , you can see the name is  funcPtr . Thus 
far, you can say:  funcPtr  is a …  

void (* func ptr[3])( );
1

2

3

4
  Figure 9-7.    Using the Right-Left Rule       

 Now, look to the immediate right of the identifier. What you see is  [3]  in the data definition. Because 
you know that a bracket ( [ ) introduces an array of some sort and that any number specifies the size of the 
array, you can now say: “ funcPtr  is an array of three … ”. 

 To find out what the array type is, you have to look to the left of the identifier to find out what the 
array is. As shown in Figure  9-7 , step 2 moves you to the left, where you find an asterisk. Because an 
asterisk in a data definition is used with pointers, you can now say: “  funcPtr  is an array of three 
pointers to … ”. 

 



CHAPTER 9 ■ USING POINTERS EFFECTIVELY

217

 To determine what the pointers point to, you need to move to the right again to see what the next 
attribute in the data definition is. What you actually see is the closing parenthesis. However, that is simply 
used to group the attributes surrounding the identifier. Since everything within the parentheses is already 
“used up,” you must move to the right to find the next attribute. As shown in step 3 in Figure  9-7 , you see a set 
of parentheses. In data definitions, parentheses are used to mark the argument list of a function. Therefore, 
you can now say: “  funcPtr  is an array of three pointers to functions … ”. 

 However, all function definitions must have a type specifier that tells what the function returns. To 
determine what the functions return, we need to move to the left in the data definition, as shown in step 4 of 
Figure  9-7 . You can now say: “ funcPtr  is an array of three pointers to functions returning  void. ” 

 If you look back to the right in the data definition after step 4, you see that there are no other attributes 
left for this data definition. Therefore, you can tell your friends that “ funcPtr  is an array of three pointers to 
functions that return  void. ” You’re done. Although people at cocktail parties won’t seem too impressed by 
this skill, it will serve you well when you’re trying to read some else’s complex code.  

     Summary 
 Pointers are one of the most powerful features in the C language. Alas, pointers are also one of the most 
difficult concepts for beginning programmers to understand. Still, pointers offer you so much flexibility 
that they are well worth the effort it takes to master them. You should spend whatever time it takes to feel 
comfortable with the concepts presented in this chapter. The effort will pay back huge dividends in your 
programming endeavors. 

 EXERCISES

     1.     In Listing  9-1  if I changed  ptr  from a character pointer to an  int  pointer, and in 
the initialization statement I wrote, 

  ptr = (int *) buffer;  

 and then ran the program, what would you expect the output to look like and why? 

 Answer: The output becomes 

  We ntecus fhmneet  

 plus a bunch of garbage. (Actually, casting to an  int  pointer would just show numeric 
values, not characters.) The reason is because the scalar for an  int  is twice as big as the 
scalar for a  char , so every other letter in the quotation is printed. However, the  while  loop 
“skips over” the  null  termination character and displays junk until a  null  (zero) is finally 
read.  

    2.    Why are pointer scalars important? 

 Answer: Any pointer manipulation needs to know the type of data to which it points so 
the compiler can adjust the operation to fit the data. Incrementing a pointer, for example, 
must advance the pointer value by the scalar size of the object being pointed to, or disaster 
results.  



CHAPTER 9 ■ USING POINTERS EFFECTIVELY

218

    3.    When can you use two pointers in an arithmetic expression? 

 Answer: Pointer arithmetic only makes sense when the pointers point to the same object.  

    4.     If you define a pointer to a function, what is the rvalue of a properly initialized 
pointer to function? 

 Answer: Just like any other pointer variable, it must hold an lvalue. In this case, it is the 
lvalue of where the function resides in memory.  

    5.    What is the purpose of The Right-Left Rule? 

 Answer: The purpose of The Right-Left Rule is to allow you to decipher complex data 
definitions.  

    6.    Unwind and verbalize the following data definitions: 

  int *ptr1[10];  
  int (*ptr2)[10];  
  int (*(*ptr3())[10])();  
  int (*ptr4(int))();  

 Answers:

•    ptr1 is an array of 10 pointers to  int .  

•   ptr2 is a pointer to an array of 10  int s.  

•   ptr3 is a function returning a pointer to an array of 10 pointers     to functions that 
return  int s.  

•   ptr4 is a function that takes an  int  argument and returns a pointer     to a function 
that returns an  int .     

    7.    What is an  enum  and how is it different than a  #define ? 

 Answer: An  enum  is a named constant, but persists after the preprocessor pass. Also, an 
 enum  is accessed using the dot operator.          



219© Jack Purdum 2015 
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming 
for the Arduino, DOI 10.1007/978-1-4842-0940-0_10

    CHAPTER 10   

 Structures, Unions, and Data 
Storage           

 This chapter takes a little deeper look at some of your options for storing data and in serial input/output 
(I/O) operations. You will also learn some new data structures that are available to you and how they can be 
used to advantage in your programs. More specifically, in this chapter you learn about

•    The  struct  keyword  

•   The  union  keyword  

•   How to use EEPROM memory in your programs  

•   Other data storage options    

 As you saw in Table   1-1    ,  m c boards have limited amounts of memory available to you. I’ve talked about 
flash and SRAM memory in previous chapters, but I haven’t had too much to say about EEPROM memory. 
In this chapter, you will learn how to use EEPROM memory in your programs. However, before we dive 
into that topic, you need to take a little detour and learn about the  struct  keyword. After that, you will use a 
structure as an organizational object for storing data in EEPROM. 

     Structures 
 Not too long ago I was involved in a project that required storing information about people/companies 
who performed services for homes. The project was in Florida and it was mainly for people who lived in 
Florida on a part time basis. The project required storing a service company’s ID number, name, password, 
and phone number. (Actually, more data was required, but this is good enough for our purposes.) From a 
data point of view, such disparate data poses a number of problems, not the least of which is how you “tie 
together” such differing data elements. You could define the data something like this: 

  int serviceID;  
  char serviceName[20];  
  char servicePW[10];  
  long servicePhone;  

 In this case, you try to link the data together by using the word “service” in the names of the data. 
Although better than nothing, such an approach doesn’t really “tie” the data together and allow us to 
manipulate it as an integrated unit of information. 

http://dx.doi.org/10.1007/978-1-4842-0940-0_1#Tab1


CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

220

 The problem of grouping dissimilar data items together is solved in C by using a structure. A  structure 
organizes different data items so they may be referenced by a single name . A structure normally holds two or 
more data items, usually of differing data types. 

     Declaring a Structure 
 An example will help you to see how a structure is declared in C. Sticking with our service people example, 
you might declare the associated structure as follows: 

  struct servicePeople {  
          int ID;  
          char Name[20];  
          char PW[10];  
          long Phone;  
  };  

 Note that the preceding statements form a data  declaration  for a structure named  servicePeople , but 
does not define a structure variable. A structure declaration is like a cake recipe: it tells you how to build a 
cake and what the cake should look like, but there’s no cake to eat … yet. The general syntax for a structure 
declaration is: 

  struct   structureTag {  
      // StructureMemberList  
  };  

 This syntax can be seen in Figure  10-1 .  

struct servicePeople {
int ID;

char Name[20];
char PW[10];

long Phone;
};

structure TAGType Specifier

  Figure 10-1.    The syntax for a structure declaration       

 The declaration begins with the keyword  struct  as the data type specifier followed by the name, or 
structure tag, of the structure.  A structure tag identifies the structure that is being declared.  Structure tags 
follow the same naming rules as any other C variable. The structure tag is followed by an opening brace, 
followed by one or more variable definitions. Collectively, these variable definitions are called the  structure 
members . After the list of structure members, there is a closing brace and then a semicolon. In our service 
example, the structure tag is  servicePeople  and it has four members. Therefore, the information stored in  ID , 
 Name ,  PW , and  Phone  are “tied together” under an umbrella structure tag named  servicePeople . 

 



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

221

 It is imperative that you understand that the structure named  servicePeople  is a template, or cookie cutter, 
from which you can create a  servicePeople  data object. In other words, at this point,  servicePeople  is a data 
declaration … no memory has been allocated yet for a single  servicePeople  variable. The structure declaration is 
like a set of blue prints for a house: It tells you the specifics about a house, but is not a house itself.  

     Defining a Structure 
 Obviously, you need to define a variable using this type of structure definition for the structure to be useful 
in a program. The syntax is: 

  struct structureTag structureVariableName;  

 To define a structure variable using our example, you would use: 

  struct servicePeople myServicePeople;  

 Figure  10-2  shows the structure definition. You now have defined a structure variable named 
 myServicePeople  that you can use in your program. The structure variable named  myServicePeople  now has 
an lvalue in the symbol table because memory has been allocated for it.  

struct servicePeople myServicePeople ;

VARIABLE is
A struct

structure
type is

servicePeople

VARIABLE NAME
is

myServicePeople

  Figure 10-2.    Defining a structure variable named myServicePeople using the servicePeople structure tag       

 An alternative way to define a structure is: 

  struct servicePeople {  
          int ID;  
          char Name[20];  
          char PW[10];  
          long Phone;  
  } myServicePeople;  

 In this case, the structure declaration and definition are combined into a single statement. That is, the 
definition of  myServicePeople  immediately follows the structure declaration, but is in a single statement. 

 You can, however, also define a structure variable without a structure tag, as in: 

  struct {  
          int ID;  
          char Name[20];  
          char PW[10];  
          long Phone;  
  } myServicePeople, yourServicePeople;  

 



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

222

 Notice that the structure tag ( servicePeople ) is missing. This is not a problem for the compiler because 
the data declaration and the data definition are combined into a single statement using the braces 
before the semicolon that ends the statement. In this example, the code defines two structure variables 
( myServicePeople  and  yourServicePeople ) separated from each other by a comma. However, this latter form 
is less used because you may need to define another structure at some other point in the program and you 
would not have a structure tag available for the definition. 

 If you have 15 different companies performing services at your home, you can create an array of 
structures, as in: 

  struct servicePeople myServicePeople[15];  

 As you know, arrays are groupings of data that share the exact same data attribute. However, structures 
allow you to have arrays that may contain many different types of data in their member lists, thus creating 
a more complex data structure. This has led one of my colleagues (Kim Brand) to say that structures allow 
you to create “arrays for adults.” Indeed, structures are similar to the object-oriented programming concept 
known as a class. The major difference, however, is that a class can also have functions (also called  methods ) 
defined within the class. Still, you will find that structures do provide a convenient way to organize dissimilar 
groups of data.  

     Accessing Structure Members 
 Now that you have all of your structure members tucked neatly away inside a structure, how do you access 
their data? Suppose you wish to retrieve the ID of a service person. If the data are stored in a structure 
variable named  myServicePeople , the statement to fetch the ID is: 

  clientID = myServicePeople.ID;  // Retrieving structure data  

 In this example, the ID associated with the service person is copied into  clientID . Obviously, it’s a two-
way street, so you could store a person’s identification number in the structure, as in: 

  myServicePeople.ID = clientID;  // Setting structure data  

 Either form is a simple rvalue-to-rvalue assignment statement. 

   The Dot Operator 
 Notice that a period separates the structure name from the member’s variable name. The period is called 
the  dot operator  and is used to denote accessing a member of the structure. You’ve studied the dot operator 
before when we talked about using the  Serial  object to print something in the  Serial  monitor using  Serial.
print() . 

 It may be useful for you to visualize a structure as a black box with a name on it. The name on the black 
box is the structure variable’s name, like  myServicePeople . Hidden inside the black box are the members 
of that structure. You cannot “see” those members because they are hidden from view by the black box 
structure itself. (Visually, think of the braces as creating a black box that surrounds the structure members.) 
However, there is a door in the black box. Think of the dot operator as the key that opens the door into the 
black box. Once you use the key (i.e., the dot operator), you have access to the members in the black box. 
Once inside the structure, all you need to do is specify the member you wish to use. 

 As shown earlier, if you are using the dot operator on the right side of the assignment operator, as in 

  clientID = myServicePeople.ID;  // Retrieving structure data  



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

223

 you are using the dot operator to fetch the data (i.e., its rvalue) of a particular member of the structure 
(i.e.,  ID ) and then copy that data into the variable on the left side of the assignment operator (i.e.,  clientID ). 
This also means that the state of the  myServicePeople  structure is unchanged after the statement is executed. 

 However, if the dot operator appears on the left side of the assignment operator, as in 

  myServicePeople.ID = clientID;  // Setting structure data  

 then the rvalue of  clientID  is copied into member  ID ’s rvalue of  myServicePeople  structure. Therefore, the 
state of  myServicePeople  is changed by the assignment statement because the rvalue of the  ID  member of the 
structure is changed. 

 Let’s write a short program that uses structures and the dot operator. The code is shown in Listing  10-1 . 

      Listing 10-1. Using the Dot Operator 

  /*  
    Purpose: To show the use of the dot operator  

    Dr. Purdum, December 21, 2014  
  */  

  struct servicePeople {  
    int ID;  
    char Name[20];  
    char PW[10];  
    long Phone;  
  } myServicePeople, yourServicePeople;  

  void setup() {  
    Serial.begin(9600);  
    Serial.print("myServicePeople lvalue: ");  
    Serial.print((int) &myServicePeople);  
    Serial.print("  yourServicePeople lvalue: ");  
    Serial.println((int) &yourServicePeople);  

    yourServicePeople.ID = 205;                   // An assignment ...  

    Serial.print("myServicePeople.ID rvalue: ");  
    Serial.print(myServicePeople.ID);  
    Serial.print("  yourServicePeople.ID rvalue: ");  
    Serial.println(yourServicePeople.ID);  

    myServicePeople = yourServicePeople;          // Copy entire structure  

    Serial.println("\nAfter assignment:\n");  
    Serial.print("myServicePeople.ID rvalue: ");  
    Serial.print(myServicePeople.ID);  
    Serial.print("  yourServicePeople.ID rvalue: ");  
    Serial.println(yourServicePeople.ID);  
    Serial.print("A servicePerson structure takes ");  
    Serial.print(sizeof(servicePeople));  
    Serial.println(" bytes of storage.");  
  }  

  void loop(){}   



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

224

 The code doesn’t do much other than define two  servicePeople  structure variables named 
 myServicePeople  and  yourServicePeople . The program uses several  Serial.print()  function calls to present 
information about the structure variables.   

  Figure 10-3.    Program output from Listing  10-1        

     Escape Sequences 
 Note the statement in Listing  10-1 : 

  Serial.println("\nAfter assignment:\n");  

 We haven’t used this technique before, but it’s worth knowing. The  ‘\n’  is called the  newline character  
and causes the display device to advance to the next line. You could just add a couple of empty  
Serial.println()  calls and do the same thing, but the use of the newline character is a little more efficient. 
If you look at the program output in Figure  10-3 , you can see that we have an empty line before and after the 
string constant “After assignment:”. The reason is because of the newline character. The reason for the backslash 
character ( \ ) before the n is to inform the compiler that this is a special character and not the plain-old 
character n. If you leave the slash out, the string would look like “nAfter assignment:”. This behavior applies 
to all of the sequences presented in Table  10-1 .   

 Table  10-1  presents several escape sequences you may find useful. 

 



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

225

 Some escape sequences are rarely used on an Arduino (e.g., \v), but are presented for the sake of 
completeness. I urge you to write a simple program with a single string in it, try some of these escape 
sequences within the string, and see what they do on your  Serial  monitor.  

     Memory Requirements for a Structure 
 If you look closely at Figure  10-3 , you can see that  myServicePeople  is stored at memory address 494 and 
 yourServicePeople  has an lvalue of 458. Hmm … 2 bytes for  ID , 20 bytes for  Name , 10 bytes for  PW , and 4 
bytes for  Phone  equals 36 (= 2 + 20 + 10 + 4). You can verify this by looking at the last line in Figure  10-3 . 
Clearly, the lvalue for  myServicePeople  plus the structure storage requirement of 36 bytes equals the lvalue 
for  yourServicePeople  (494 = 458 + 36). Therefore, we know these two structure variables are stored back-to-
back in flash memory. (This is an interesting fact, but I wouldn’t always bet the farm on the compiler doing 
back-to-back memory allocations.) 

 The second line in Figure  10-3  shows that  myServicePeople.ID  has a value of 0, whereas 
 myServicePeople.ID  has the value of 205. This is exactly as it should be since the value 205 was assigned into 
the  ID  member of  yourServicePeople.  

 The statement 

  myServicePeople = yourServicePeople;  // Copy the entire structure  

 copies the entire contents of the  yourServicePeople  structure variable into  myServicePeople . By leaving out 
the dot operator that would pick a single member, this assignment copies the entire structure in a single 
statement. Because the compiler knows that each  servicePeople  variable uses 36 bytes of memory for storage, 
the compiler simply copies 36 bytes of data starting at memory address 458 (the lvalue of  yourServicePeople ) 
to memory address 494 (the lvalue of  myServicePeople ). As a result, the two structure variables now have the 
same rvalues for each of the structure members. The program displays the rvalues for the  ID  members for 
both variables on the next line of output. The last line in Figure  10-3  confirms that each structure variable 
requires 36 bytes of storage. 

 The code shows that although you could perform an assignment statement for each member of the two 
structures using the dot operator, it is much easier to simply copy the entire structure with an assignment 
statement.  

    Table 10-1.    ASCII Escape Sequences   

 Escape Sequence  ASCII Value  Description 

 \a  7  Alarm, bell, buzzer 

 \b  8  Backspace 

 \f  12  Form feed 

 \n  10  Newline, line feed 

 \r  13  Carriage return 

 \t  9  Horizontal tab 

 \v  11  Vertical tab 

 \\  92  Backslash 

 \'  39  Single quote mark 

 \"  34  Double quote mark 



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

226

     Returning a Structure from a Function Call 
 Suppose you need to return a structure from a function call. How is that done? Listing  10-2  is almost 
identical to Listing  10-1  except for the lines marked with comments: 

         Listing 10-2. Modified Dot Operator Example 

  /*  
    Purpose: To show the use of the dot operator  

    Dr. Purdum, December 21, 2014  
  */  

  struct servicePeople {  
    int ID;  
    char Name[20];  
    char PW[10];  
    long Phone;  
  } myServicePeople, yourServicePeople;  

  struct servicePeople SetPhoneNumber(struct servicePeople temp);   // New  

  void setup() {  
    Serial.begin(9600);  
    Serial.print("myServicePeople lvalue: ");  
    Serial.print((int) &myServicePeople);  
    Serial.print("  yourServicePeople lvalue: ");  
    Serial.println((int) &yourServicePeople);  
    yourServicePeople.ID = 205;  
    Serial.print("myServicePeople.ID rvalue: ");  
    Serial.print(myServicePeople.ID);  
    Serial.print("  yourServicePeople.ID rvalue: ");  
    Serial.println(yourServicePeople.ID);  
    myServicePeople = SetPhoneNumber(yourServicePeople);  // Changed  
    Serial.println("\nAfter assignment:\n");  
    Serial.print("myServicePeople.ID rvalue: ");  
    Serial.print(myServicePeople.ID);  
    Serial.print("  yourServicePeople.ID rvalue: ");  
    Serial.println(yourServicePeople.ID);  
    Serial.print("A servicePerson structure takes ");  
    Serial.print(sizeof(servicePeople));  
    Serial.println(" bytes of storage.");  
    Serial.print("myServicePeople.Phone rvalue: ");      // New  
    Serial.print(myServicePeople.Phone);                 // New  
  }  
  void loop(){  

  }  
  // All lines below are new  
  struct servicePeople SetPhoneNumber(struct servicePeople temp)  
  {  
    temp.Phone = 2345678;  
    return temp;  
  }   



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

227

 The first new line is a function declaration at the top of the program. This is necessary for the compiler 
to know what  SetPhoneNumber()  takes for parameters and what its return value is. That is, the statement is 
a function prototype declaration that can be used for type checking. The next new line appears toward the 
middle of the listing and it is marked by the comment “Changed”. In the following statement, the structure 
variable  yourServicePeople  is passed to the function: 

  myServicePeople = SetPhoneNumber(yourServicePeople);          // Changed  

 As you can see in Listing  10-2 , the code for the new function sets the phone number for  temp  to 
2345678. The code returns  temp  to the caller, which assigns the value of the structure into  myServicePeople.  
The two new statements at the bottom of the  setup()  loop display the new phone number that has been 
copied into  myServicePeople.Phone.  Indeed, every member of the  myServicePeople  variable is the same as 
the  myServicePeople  variable … sort of. 

 After the call to  SetPhoneNumber() , you can see from the print statements that  myServicePeople.Phone  
has been changed. But what about  yourServicePeople.Phone ? If you add a few more print statements, you 
will discover that  yourServicePeople.Phone  is 0. Why is that?  

 Remember from our pointer discussions that, unless told to do otherwise, any value type that is 
passed to a function is a copy of that variable sent to the function, not the lvalue of the variable. Because a 
copy is sent, there is no way for the function to permanently alter the rvalue of the variable being passed. 
This conclusion holds for structures, too. The conclusion is always the same: functions cannot change the 
variables passed to it unless they have the variable’s lvalue. 

 Structures can also be used to simplify passing arguments to functions. For example, perhaps a function 
needs to use the data stored in four sensors to decide whether to add a chemical to a vat. The signature for 
the function might be: 

  int AddChemical(int sensor1, int sensor2, int sensor3, int sensor4);  

  Figure 10-4.    Returning a structure program output       

 



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

228

 Instead, you could define a structure 

  struct sensors {  
     int sensor1;  
     int sensor2;  
     int sensor3;  
     int sensor4  
  } vatSensors;  

 and then call the function using: 

  AddChemical(vatSensors);  

 This makes the function call a little less wordy. Also, if you later discover that some additional 
parameter needs to be added to the function call, it’s pretty easy to change the structure declaration to add 
the new parameter. All of the calls to the function that use that structure could remain unchanged. 

 What if you need the function to permanently alter the value of  yourServicePeople.Phone ? That’s the 
subject of the next section.  

     Using Structure Pointers 
 The old K&R (Kernighan and Ritchie, co-authors of the original book on C) version of C did not allow you 
to pass a structure to a function like you did in the last example. K&R C forced you to use a pointer to the 
structure when passing structures to functions. That limitation was removed with the adoption of the ANSI 
C standard (X3J11). When you passed the structure to the  SetPhoneNumber()  function in Listing  10-2 , you 
used 38 bytes of stack space (36 for the structure and 2 for the return address) to do it. If you used a pointer, 
you could perform the same operation using only 4 bytes of stack space (2 for the pointer and 2 for the return 
address) and you could remove the assignment statement upon return from the function. Listing  10-3  is the 
same as Listing  10-2 , except structure pointers are used. 

    Listing 10-3. Using a Pointer to Structure 

  /*  
    Purpose: To show the use of pointers to structures  

    Dr. Purdum, December 21, 2014  
  */  

  struct servicePeople {  
    int ID;  
    char Name[20];  
    char PW[10];  
    long Phone;  
  } myServicePeople, yourServicePeople;  

  void SetPhoneNumber(struct servicePeople *temp);        // New signature declaration  

  void setup() {  
    Serial.begin(9600);  
    Serial.print("myServicePeople lvalue: ");  
    Serial.print((int) &myServicePeople);  



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

229

    Serial.print("  yourServicePeople lvalue: ");  
    Serial.println((int) &yourServicePeople);  
    yourServicePeople.ID = 205;  
    Serial.print("myServicePeople.ID rvalue: ");  
    Serial.print(myServicePeople.ID);  
    Serial.print("  yourServicePeople.ID rvalue: ");  
    Serial.println(yourServicePeople.ID);  
    SetPhoneNumber(& myServicePeople);                    // Pass the lvalue  
    Serial.println("After assignment:");  
    Serial.print("myServicePeople.ID rvalue: ");  
    Serial.print(myServicePeople.ID);  
    Serial.print("  yourServicePeople.ID rvalue: ");  
    Serial.println(yourServicePeople.ID);  
    Serial.print("A servicePerson structure takes ");  
    Serial.print(sizeof(servicePeople));  
    Serial.println(" bytes of storage.");  
    Serial.print("myServicePeople.Phone rvalue: ");       // New  
    Serial.println(myServicePeople.Phone);                // New  
    Serial.print("yourServicePeople.Phone rvalue: ");  
    Serial.println(yourServicePeople.Phone);  
  }  
  void loop(){  
  }  

  // Lines below are changed  
  void SetPhoneNumber(struct servicePeople *temp)         // Note pointer now used  
  {  
    (*temp).Phone = 2345678;  
  }   

 Figure  10-5  shows a sample run of the program.  

  Figure 10-5.    Using pointer to structure       

 



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

230

 There are a few minor changes between Listing  10-2  and  10-3 . First, near the top of the listing the 
declaration for the  SetPhoneNumber()  is changed to reflect that the function now returns nothing ( void ) and 
that a pointer to structure is the parameter. Second, about midway in the listing you can see the call to the 
function has been changed to: 

  SetPhoneNumber(&myServicePeople);                // Pass the lvalue  

 In the previous version, the return from the  SetPhoneNumber()  function call assigned the structure into 
 myServicePeople . The code is now using a pointer to a structure as the argument, so you use the address-of 
operator ( & ) to pass the lvalue of  myServicePeople  to the function instead. Because the function now has 
direct access to  myServicePeople , there is no need to return a structure from the function call and make the 
assignment into  myServicePeople  as there was in Listing  10-2 . 

 The parameter passed to  SetPhoneNumber()  has been changed to a pointer 

  void SetPhoneNumber(struct servicePeople *temp)  

 which means that  temp  is a pointer to the  myServicePeople  structure. 
 The statement 

  (*temp).Phone = 2345678;  

 looks a little strange and needs some explanation. Because the dot operator has a higher precedence level 
than the indirection operator, you need to surround the indirection operator on  temp  with parentheses. The 
parentheses cause the compiler to fetch the lvalue of the  Phone  member of the structure and assign 2345678 
into that address. This means that the statement changes the rvalue of  Phone  to 2345678. This is exactly what 
you want to do. 

 If you didn’t use the parentheses to surround  temp  

  *temp.Phone = 2345678;  // Wrong!  

 would instruct the compiler to fetch the rvalue of  Phone  and use it as an lvalue. Because the rvalue of Phone 
is 0, this would try to write 2345678 at memory address 0. This is another train wreck waiting to happen 
because Listing  10-5  tells you that the  myServicePeople  structure resides at memory address 558. A little 
quick math suggests that the  Phone  member of the structure can be found at memory address 590, not 0. 
Using an rvalue as an lvalue and writing data to an unknown memory address is almost never a good idea. 
Fortunately, the compiler catches this error if you tried to misuse the  temp  pointer. 

 The syntax used to access a structure member via a pointer is so common in C, a special operator was 
developed to simplify the statement from: 

  (*temp).Phone = 2345678;  

 to use the dereference operator (→) instead: 

  temp → Phone = 2345678;  

 The result is the same as the earlier version that used the parentheses and asterisk to change the phone 
number. You will likely see this shorter version more often.  



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

231

     Initializing a Structure 
 If you wish, you can initialize a structure variable at its point of definition, as in: 

  servicePeople myServicePeople = {  
    101,                     // ID number  
    "Kack's Lawn Service",   // Company name  
    "Clowder",               // Password  
    2345678,                 // Phone number  
  };  

 The initialize value for each member is separated from the next by the comma operator. The preceding 
statements would cause the  myServicePeople  to be initialized with the values shown. Note that this form 
of initialization requires that the values align with the member definitions. This initialization obviously 
assumes that you have defined the  servicePeople  structure before the initialization statement block occurs in 
the code. 

 ■   Note   By the way, while I was writing this section, I cut and paste the preceding definition from my word 
processing program into the Arduino IDE editor and compiled the program. I got an error message stating: 
“error: stray '\' in program”. I’d be embarrassed to tell you how long it took me to overcome this forest-for-
the-trees problem. As it turns out, if you paste quote marks from a text editor into the Arduino IDE source 
code window, it keeps the “left-leaning” and “right-leaning” double quote marks. However, if you erase those 
quotation marks and redo them inside the Arduino editor, the double quote marks are replaced with “vertical” 
quote marks and the quoted string changes color from black to light blue. The program then compiled without 
error. It was one of those old-dog-new-tricks thingies that ultimately led to a flat forehead moment….   

     Arrays of Structures 
 As you might guess, real life likely would have more than one service company tending to a home. It’s not 
uncommon to have a pool company, a lawn company, a landscape company, and an “indoor” service 
company pay visits to a home. Clearly, an array of structures would be useful, since each element of the array 
could hold one service company. 

 Assuming the code has already declared the  servicePeople  structure, you could define an array of 
 servicePeople  as: 

  struct servicePeople myCompanies[10];  

 This would define an array named  myCompanies[]  that is capable of storing the necessary data for 10 
 servicePeople  companies. If you want to assign the  ID  number 222 to the fifth company in the array, the 
statement is 

  myCompanies[4].ID  = 222;  

 would change the rvalue of  ID  for the fifth person in the  myCompanies[]  array. (Arrays are zero-based, 
right?) 



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

232

 After the array is defined, you can use regular assignment statements to set the values for the different 
elements of the array. However, if you wanted to initialize part of the array when it is defined, you might use: 

  struct servicePeople myCompanies[10] = {  
      {1, "This is a dummy","admin", 5555555},  
      {101, "Kacks Lawn Service", "Clowder", 2345678}  
  };  

 This code would initialize the first two elements of the array. (Strictly speaking, the  struct  keyword is not 
required in the preceding statement since the structure tag  servicePeople  identifies the structure provided 
you have declared the structure earlier in the program. However, the keyword does document that the code 
is using a structure.) The remainder of the array would have zero or  null  values stored for the rvalues of their 
members. 

 By the way, the data in this structure is likely not to change very often. Because the data are fairly stable, 
you could store the structure data in EEPROM memory, thus saving a few precious bytes of SRAM. More on 
this later in the chapter.   

     Unions 
 A  union  is a small chunk of memory that is set aside to hold differing data types. A  union  acts like a small 
buffer that is capable of holding a predefined type of data. For example, suppose you have a program that 
reads data from a series of different sensors. Some sensors return a  char , others an  int , whereas some return 
a  float  data type. Clearly, you could define temporary working variables, such as 

  char tempChar;     // 1 bytes  
  int  tempInt;      // 2 bytes  
  float tempFloat;   // 4 bytes  

 and then assign the sensor readings into the appropriate variable. This approach uses 7 bytes of memory. 
 You could also use the following  union : 

  union {  
     char tempChar;  
     int  tempInt;  
     float tempFloat;  
  } sensorReading;  

 You can also use a  union tag  in much the same manner that you did with structures. You could use 

  union sensorSystem {  
     char tempChar;  
     int  tempInt;  
     float tempFloat;  
  };  
  sensorSystem sensorReading;  

 which uses the  union  tag name  sensorSystem  to define the  union  type variable named  sensorReading . 
 The  union  defined as  sensorReading  is big enough to hold any  one  of the three sensor types,  but only one 

at a time.  In other words, you can place a  float  into the  union  and then read it back, or you can place a  char  
into the union and then read it back, or you can place an  int  into the  union  and then read it back,  BUT not 



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

233

all three at once ! So, how much memory does  sensorReading  use? It uses 4 bytes rather than 7 like a structure 
would. Now, put the book down, leave the room, find a friend, and explain to them  why  this  union  only uses 
4 bytes of memory. If you can do that, you already understand how a  union  works. If not, read on…. 

 So, how do you use a  union ? For example, to place a  float  into the  union  and then read it back, you 
might use: 

  float currentFloatSensorReading = 51.25;  
  sensorReading.tempFloat = currentFloatSensorReading;    // move float into union  
  // some more code ...  
  currentFloatSensorReading = sensorReading.tempFloat;      // fetch int from union  

 Note how the dot operator is used to reference the appropriate union member. The dot operator works 
much the same as it did for structures. If you wish to read an  int  from the union, the statement might be: 

  currentIntSensorReading = sensorReading.tempInt;  

 The  union , however, works differently that a structure. With a structure, the dot operator was followed 
by the structure  member  you wish to extract from the structure. With a  union , the  dot operator separates you 
from the union member that tells you   how many bytes   to extract from the union . This means you can do some 
really stupid stuff with a  union . For example, consider: 

  float currentFloatSensorReading = 51.25;  
  sensorReading.tempFloat = currentFloatSensorReading;  // float into union  
  // some more code ...  
  currentFloatSensorReading = sensorReading.tempInt ;   // int from union  

 In this example, you put in a  float  value, but later extract the contents of the union as though it were 
an  int . You are literally taking out “half a  float ” and thinking it’s going to work as an  int . Best case is that this 
causes a spectacular failure, making it easy to debug. Worst case is the value extracted from the  union  might 
be formed such that the value seems reasonable. The lesson is simple: 

  Whatever you put into the union should match what you take out of the union. It’s your responsibility to 
keep track of things.  

 The advantage of a  union  is that you can move different types of data into and out of a single  union  
variable. Also, the  union  only uses 4 bytes of memory whereas the discrete variables of a  struct  would use 
7 bytes of memory. (A  union  is always allocated just enough memory to hold the largest data item that is a 
member of the  union . Drawing on our Bucket Analogy, the compiler looks at all of the buckets associated 
with the  union , grabs the biggest one, and that becomes the  union ’s bucket for all its members. ) That’s the 
good news. As mentioned earlier, the bad news is that the compiler assumes you are keeping track of what 
is currently in the  union . Just remember, apples in, oranges out, almost always leads to unwanted surprises 
when you are using  union s.  

     EEPROM Memory 
 In the previous sections of this chapter, you’ve discussed how to organize service company data into a  struct . 
You then learned how to store that data in an array of structures. However, it doesn’t do a whole lot of good 
if the company data disappears each time the power is removed from the  m c board, either on purpose or by 
accident. In this section, you will learn one way to persist such data even if power is lost. 

 As you learned from Table   1-1    , each Atmel-compatible  m c board has a specific amount of flash, SRAM, 
and EEPROM memory available. Both the flash and EEPROM memory are nonvolatile, which means those 
types of memory do not lose their data when power is removed. You have also learned that data with global 

http://dx.doi.org/10.1007/978-1-4842-0940-0_1#Tab1


CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

234

scope are allocated in SRAM memory with any initialized values copied from flash memory to SRAM. 
However, temporary data, like that we see passed as function arguments, are also chewing up SRAM space. 

 More bad news is that global data can be contaminated more easily than data with a more restrictive 
scope level (e.g., function scope). Because every element in the program has access to global data, it can be 
difficult to isolate the section of code that is contaminating the data. If you move the data inside a function 
body, scope is now limited, but the data are now allocated on the stack. Because there is less SRAM than 
flash memory and because SRAM is volatile memory, the array is not persisted when power is lost. One way 
to address this problem is to start using EEPROM memory. 

 Up to this point, our sample programs have not used EEPROM memory. It’s not that we’ve avoided 
the stash of EEPROM memory. Rather, our programs have been so simple that we’ve never impinged on 
the memory limits so there was no need to use it. Also, we have kind of avoided using it because EEPROM 
memory is relatively slow. 

 Usually, EEPROM memory is used to store configuration data. The configuration data could be anything 
from terminal baud rates for I/O communications to data that is required to initialize program sensors. As 
I pointed out before, EEPROM has a finite number of erase/write cycles in which the EEPROM can reliably 
erase and write data. Although a million such cycles may be possible, most developers assume EEPROM 
develops a mind of its own after approximately 100,000 cycles. While that may sound like a lot of cycles, if 
you update a variable that is stored in EEPROM once every second, the program runs the chance of getting 
flaky in less than two days. Still, if the data is rarely changed, as is likely the case with our  servicePerson  array, 
EEPROM memory may be a viable alternative. 

     Using EEPROM 
 The Arduino IDE comes with an EEPROM library, which you can find in the Libraries directory where you 
installed your Arduino software. You should spend a little time reading up on the EEPROM library and its 
example code. 

   Data Logging 
 In the following discussion, our comments are directed to the “on board” EEPROM, and not any external 
EEPROM that may be sitting on a shield or other external device. EEPROM memory is not an optimal choice 
for data logging for several reasons. First, because EEPROM is fairly slow, it may not be able to keep up 
with whatever device is feeding it data. Second, data logging is usually a sequential process. This means 
maintaining a pointer to where the next byte of logged data it to be written. If this pointer is maintained in 
the EEPROM memory space, it can become unreliable because it may need to be updated (i.e., an erase/
write cycle) fairly frequently. Also, the amount of EEPROM data is usually quite limited and there just may 
not be enough storage to be useful. Finally, EEPROM memory behaves like a  ring buffer . That is, if your 
board has 512 bytes of EEPROM and you try to write to address 512 in EEPROM memory, it simply “wraps 
around” to EEPROM address 0 and writes the data. (The valid EEPROM addresses are 0 through 511, right?) 
Clearly, if you need whatever was stored at address 0, you have a problem. Because of these limitations, data 
logging programs frequently use an external device for storage of logging data. 

 For the moment, however, assume you have a very limited data set to preserve and you think EEPROM 
might be a good place to store it for now. Let’s see how that might work. Instead of presenting a single long 
code listing, we are going to break it down so we can keep the relevant code visible while discussing that 
code. Also, the example is contrived because we start out with the data stored in SRAM memory and then 
move it to EEPROM memory. Clearly, this doesn’t help solve a memory limitation problem. However, the 
example does show you a number of things you need to address when you use EEPROM memory. 

 Our design is to save the information on ten service companies that I mentioned earlier in this chapter. 
We want to keep information in the  servicePeople  structure, but store it in EEPROM. Listing  10-4  shows the 
global data definitions and declarations, the  setup()  loop code. 



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

235

 The first statement in Listing  10-4  is a  #include  preprocessor directive to read in the  EEPROM.h  header 
file. This file contains information the compiler needs to properly work with the EEPROM library. The 
 #define DEBUG  preprocessor directive is used to toggle debug print statements into and out of the code. You 
can see examples of this in the  setup()  loop. For example, the statements 

  #ifdef DEBUG  
    Serial.print("EepromMax = ");  
    Serial.println(eepromMax);  
  #endif  

 cause the  Serial.print()  statements to appear in the program only if  DEBUG  is defined for the program. (We 
have already covered the use of DEBUG.) Because the code does have a  #define DEBUG 1  preprocessor 
directive at the top of Listing  10-4 , the print statements are compiled into the program. Recall that, if you 
comment out the  #define  DEBUG 1 directive,  DEBUG  is no longer defined and the  Serial.print()  statements 
are omitted from the program. Such code is commonly called  scaffold code , because it is “toggled out” of the 
program after debugging is completed, much like scaffolding is removed once a building is finished. 

        Listing 10-4. The setup() Loop Code 

  /*  
   Purpose: To write data to EEPROM memory.  

    Dr. Purdum, December 22, 2014  
   */  
  #include <EEPROM.h>  
  #define DEBUG 1          // We want to see debug print statements  
                           // Comment out to avoid seeing print statements  

  const int MAXPEOPLE = 10;  
  struct servicePeople {  // Structure definition for servicePeople  
    int ID;  
    char Name[20];  
    char PW[10];  
    long Phone;  
  };  

  union servicePeopleUnion {              // A union definition for myUnion  
    byte temp[sizeof(int)];  
    int testID;  
    struct servicePeople testServicePeople;  
  } myUnion;  

  servicePeople myPeople[MAXPEOPLE] = {   // company data for testing  
    {0, "This is a dummy","admin",5555555},  
    {101,"Kack Lawn Service","Clowder",2345678},  
    {222,"Jane's Plants","Noah",4202513},  
    {333,"Terrys Pool Service","Billings",4301016}  
  };  
  // function declarations:  
  void DataDump(struct servicePeople temp);  
  int FindEepromTop();  
  int ReadIntFlag();  



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

236

  void ReadOneRecord(int index);  
  void WriteFirstRecord();  
  void WriteOneRecord(int index);  

  int loopCounter = 0;            // Number of passes to make through loop  
  int initFlag = 0;               // Has the EEPROM been initialized?  
  struct servicePeople temp;      // A temporary structure  

  void setup()  
  {  
    int eepromMax;  
    int i;  

    Serial.begin(9600);  
    eepromMax = FindEepromTop();          // How much EEPROM?  
  #ifdef DEBUG  
    Serial.print("EepromMax = ");  
    Serial.println(eepromMax);  
  #endif  
    initFlag = ReadIntFlag();  // Initialized?  
    if (initFlag == 0) {  
      for (i = 0; i < MAXPEOPLE; i++) {  
          WriteOneRecord(i);  
      }  
    }  
    initFlag = 1;  // Either way, EEPROM is initialized by now  
  }   

 ■   Note   When you first get your Arduino board, the EEPROM is in a “fresh from the factory” condition. What this 
usually means is that all of the EEPROM memory bytes are initialized to 0xFF. Reading two of these bytes back to 
back gives 0xFFFF, which is –1 when those 2 bytes are read as an  int . However, this is some RDC on my part, as 
I assumed that everyone was using an Arduino board that had never done anything with the EEPROM memory. To 
fix this, I added one line to  setup() , immediately after the call to  ReadIntFlag() . The code looks like this: 

  initFlag = ReadIntFlag();  
  // initFlag = -1;      // Remove comment at beginning of this  
                                            // line first time you run program.  
  if (initFlag < 0) {  
       // Rest of code unchanged  

 By setting  initFlag  to –1, you force the code to initialize the EEPROM memory with the test values in the 
program. Once you have run the program, you can “recomment” the line back to the way it was.  

 Next, the code defines a  const  integer named  MAXPEOPLE  that is used to set the limit for the number 
of companies you will allow. You could use a  #define  instead, but this gives you an actual variable to work 
with if you wish. That is followed by a structure declaration for  servicePeople  and a  union  with a  union  tag of 
 servicePeopleUnion . Although we don’t really make much use of this  union , it will at least let you see how a 
 union  is used. 



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

237

 The code then defines a  myPeople[]  array of  servicePeople  and initializes the array with four records. The 
first record is bogus. The sole purpose of this element of the array is to determine whether or not the array 
has been copied into EEPROM memory. If the  ID  member is 0, that means the array has not yet been copied 
into EEPROM memory. Actually, it is a good idea to copy the array into EEPROM regardless, since the code 
is within the  setup()  loop and hence actually part of the Initialization Step anyway. In fact, you could use the 
other three members of this element of the array for other purposes, as long as you are consistent with the 
data type of the member. 

 After the array is initialized, several function declarations are presented followed by definitions for 
several global variables. The code then finds the  setup()  loop. The first thing done is find the maximum 
amount of EEPROM memory that is available for the board. True, you know what this is for your board, but 
what if you change boards later? The code for the  FindEepromTop()  is presented in Listing  10-5 . The code 
takes advantage of the fact that the amount of available EEPROM memory is held in an Arduino symbolic 
constant named  E2END , and represents the largest valid address in EEPROM memory for the board being 
used. Adding 1 to that value returns the amount of EEPROM available. 

     Listing 10-5. Source Code for FindEepromTop() 

  /*****  
    Purpose: Find out how much EEPROM this board has. I  

    Parameter list:  
      void  

    Return value:  
      int          the EEPROM size  
  *****/  
  int FindEepromTop()  
  {  
     return E2END + 1;  
  }   

 If you try to write to an EEPROM address that is higher than the EEPROM that’s available, the address 
pointer to the EEPROM wraps back to address 0. This can be a tricky bug to track if you don’t realize what’s 
happening. The reason is because, if you only have 512 bytes of EEPROM, the valid addresses are 0 through 
511. Trying to write to address 512 “wraps around” back to the first memory address. There is no obvious 
indication that something went wrong. The EEPROM memory space, therefore, behaves as though it is a ring 
buffer. 

 Next, the code reads the first bytes of memory to see if the array has been copied to EEPROM. The code 
for the  ReadIntFlag()  is presented in Listing  10-6 . 

   Listing 10-6. Source Code for ReadIntFlag() 

  /*****  
    Purpose: This function reads the int-sized bytes of EEPROM and  
            returns the integer found there.  

    Parameter list:  
      void  

    Return value:  
      int          0 if no records in EEPROM, 1 if there are  
  *****/  



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

238

  int ReadIntFlag()  
  {  
    int i;  

    for (i = 0; i < sizeof(int); i++) {  
      myUnion.temp[i] = EEPROM.read(i);  
    }  
    return myUnion.testID;  
  }   

 The  ReadIntFlag()  shows how simple it is to read EEPROM memory. The EEPROM library 
that is distributed with the Arduino IDE only has two EEPROM functions:  read()  and  write() , although 
the examples for the library also show how to clear EEPROM memory. (Coupled with the 
 FindEepromTop()  function presented in Listing  10-5 , a  ClearEprom()  function could easily be added to the 
library.) 

 The  ReadIntFlag()  function is written so it works with differently sized  int  data types. The Diligent 
chipMax CPU, for example, uses a 4-byte  int , whereas most Arduino boards are currently 2-byte  int s. By 
using  sizeof(int)  to control the  for  loop, the code reads the necessary number of bytes to form an  int  into the 
 union ’s  temp[]  array for the board being used. (Note that we defined the  myUnion.temp[]  array using the 
same type of  sizeof(int)  expression.) Therefore, the  ReadIntFlag()  reads the proper number of bytes into the 
array regardless of the board you are using. When the  for  loop ends, the  temp[]  array  union  member holds 
the data needed to form an  int . But here’s the cool part: because  myUnion  can also hold an  int , we use the 
statement 

  return myUnion.testID;  

 to return the  int  to the caller. This works because of the way a union works, as explained earlier. Treating 
those individual bytes simply as array elements rather than a specific data type allows us to abstract from 
the LittleEndian/BigEndian problem, which is a can of worms we don’t need to discuss here. (If you wish 
to explore this issue further, simply Google endian problem.) Suffice it to say this approach is a good way to 
extract an  int  from EEPROM. 

 If  ReadIntFlag()  returns 0, you know that the  myPeople[]  structure array has not been read into EEPROM 
memory. As you can see in Listing  10-4 , the code does return a value from the  ReadIntFlag()  function call. 
The  if  test avoids copying the data into EEPROM memory (perhaps for a second time). The code in 
Listing  10-4  simply copies the array to EEPROM via the call to  WriteOneRecord() . The code for that 
function appears in Listing  10-7 . 

    Listing 10-7. Source Code for WriteOneRecord() 

  /*****  
    Purpose: This function writes one record from the myPeople[] array  
          to EEPROM  

    Parameter list:  
      int index      The element of the myPeople[] array to write  

    Return value:  
      void  
  *****/  



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

239

  void WriteOneRecord(int index)  
  {  
    byte *b;  
    int i;  
    int offset = index * sizeof(servicePeople);  

    b = (byte *) &myPeople[index];    // Going to write this record  
    for (i = 0; i < sizeof(servicePeople); i++) {  
      EEPROM.write(i + offset, *b++);  
    }  
  }   

 The  WriteOneRecord()  shows how to use the EEPROM  write()  function. The function accepts an index 
into the  myPeople[]  array as the only parameter to the function. The  byte  pointer,  b , is initialized to point 
to the lvalue where this element of the  myPeople[]  array exists in SRAM memory. It does this by using the 
address-of operator. The variable  offset  is necessary to calculate the lvalue of where this particular element 
into which the  myPeople[]  array should be copied in EEPROM memory. The call to  EEPROM.write()  then 
writes each byte of the array element to EEPROM memory. The  expression2  of the  for  loop dictates how 
many bytes are written. The  sizeof(servicePeople)  expression, therefore, ensures that only 36 bytes are written 
to EEPROM memory. The call to  WriteOneRecord()  is called  MAXPEOPLE  times (i.e., 10) even though only 
the first four elements contain any useful data. Notice how  offset  makes sure the new data are copied to the 
correct lvalue in the EEPROM memory space. If this isn’t clear, keep studying the code until it is. Take time to 
calculate the value for  offset  and it should make sense to you. 

 After the  for  loop finishes copying the data to the EEPROM memory space, the program falls into the 
 loop()  function for further processing. The code for the  loop()  function is shown in Listing  10-8 . The first 
statement in the function defines and sets the  eepromIndex  variable to 1. This is done because you know the 
first record contains no useful information. Therefore, you are only interested in what follows the first record 
in the  myPeople[]  array. 

   Listing 10-8. Source Code for the loop() Function 

  void loo3p()  
  {  
    static int eepromIndex = 1;  // Assume there are records  

    loopCounter++;  
    if (initFlag > 0) {  // There are records to read  
      ReadOneRecord(eepromIndex++);  
      if (myUnion.testServicePeople.ID != 0) { // Read some real data  
         DataDump(myUnion.testServicePeople);  
      }  
    } else {  
      eepromIndex++;      // Make sure loop can end with no records.  
    }  

  #ifdef DEBUG  
    Serial.println("==========");  
  #endif  
    if (eepromIndex == MAXPEOPLE) {  
      while(1);     // Just spin around here forever...  
    }  
  }   



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

240

 There’s not a whole lot going on in the  loop()  function. The variable  initFlag  tests to see if the 
data have been copied to the EEPROM memory space. Because this is the case, the program calls 
 ReadOneRecord (eepromIndex)  to read a record from EEPROM. The code for  ReadOneRecord()  is 
presented in Listing  10-9 . 

   Listing 10-9. Source Code for ReadOneRecord() 

  /*****  
    Purpose: This function reads one servicePerson record from  
          EEPROM  

    Parameter list:  
      int index    The element of the myPerson[] array to read  
                  from EEPROM  

    Return value:  
      void  
  *****/  
  void ReadOneRecord(int index)  
  {  
    byte *bPtr;  
    int i;  
    int offset;  

    offset = index * sizeof(servicePeople);      // must offset from 0 in EEPROM  

    bPtr = (byte *) &myUnion.testServicePeople;  // where to put the data read  

    for (i = 0; i < sizeof(temp); i++) {         // Loop through the bytes...  
      *bPtr = EEPROM.read(offset + i);  
      bPtr++;  
    }  
  }   

 The code is very similar to Listing  10-7 , only this time you are reading rather than writing, the data. 
Variable  offset  is necessary to place the byte pointer,  bPtr , at the correct lvalue in the EEPROM memory 
space. Once  bPtr  is properly set, the code reads  sizeof(servicePerson)  bytes of data (36 bytes) from EEPROM 
into the  union myUnion . Obviously, we want this data to be copied into the  servicePeople  structure of the 
 union , which is why  bPtr  is set to the address of  myUnion.testServicePeople.  Notice how  offset  is used so the 
proper data are read. 

 Upon return from the call to  ReadOneRecord() , the code checks to see if the  myUnion.testServicePeople.
ID  is non-zero. If that is true, then the  DataDump()  function is called and… 

 Whoa! Back up the boat…. 
 Why are there two dot operators in the statement? 

  if (myUnion.testServicePeople.ID != 0) { // Read some real data  

 Why not? This statement is a little like one of those Russian box-within-a-box-within-a-box thingies. 
As you know, a  union  is a data structure that is like a black box that needs a key (i.e., a dot operator) to 



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

241

“get inside” the  union  data structure. So, you pull that key out and open the  union  door and walk in. 
What do you see? First you see the  temp[]  array defined. Next, you see an  int  named  testID,  but then you 
see another black box named  testServicePeople . You also know you need a different key (another dot 
operator) to get inside the  testServicePeople  structure. Therefore, to do anything useful with the contents 
of the  testServicePeople  structure means you need two sets of keys (dot operators) to get to the data that 
is obscured by two black boxes. This is why there are two dot operators … you need one key to get inside 
the  myUnion  and a second key to examine the  testServicePeople  data structure to look at the structure 
member named  ID . 

 There is no practical limit as to how many “boxes-within-boxes” levels can be used in a statement. 
Many years ago I worked with a (poorly designed) database structure that required 13 dot operations to 
get to the data I needed. Although this is an extreme (RDC) case, you should not go into cardiac arrest 
when you see a bunch of dot operators in a statement. Simply keep the black box concept in mind and pay 
attention to what data type you are entering with each key (dot operator) and you should have no difficulty 
figuring things out. 

 Eventually, the  DataDump()  function is called to display the data that was just read. The code is 
presented in Listing  10-10 . 

   Listing 10-10. Source Code for DataDump() 

  /*****  
    Purpose: Sends the data stored in parameter to the serial monitor  

    Parameter list:  
      struct servicePeople temp    // The data to be displayed  

    Return value:  
      void  
  *****/  
  void DataDump(struct servicePeople temp)  
  {  

      Serial.println();  
      Serial.print("ID = ");  
      Serial.print(temp.ID);  
      Serial.print("  Name = ");  
      Serial.println(temp.Name);  
      Serial.print("  PW = ");  
      Serial.print(temp.PW);  
      Serial.print("  Phone = ");  
      Serial.println(temp.Phone);  
  }   

 As you can see, all the  DataDump()  function does is display the contents of the  myUnion.
testServicePeople  structure that was just read from EEPROM memory. In a real application, the  myPeople[]  
data would be used for some form of additional processing rather than just dumping to the serial device. 
Still, the program does show how to use EEPROM memory to store data that needs nonvolatile storage. A 
sample run of the program can be seen in Figure  10-6 .  



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

242

  Figure 10-6.    EEPROM program sample run       

 While EEPROM offers one way to persist data when the power is removed, the limited amount of 
EEPROM memory that is one your board simply may not be enough to meet your needs. If that’s the case, 
what other options exist?    

     Other Storage Alternatives 
 There are a number of ways that you can increase the amount of data storage available for an Arduino-
compatible board. Data logging, for example, is a common use for  m c but an Arduino is likely going to need 
some help if large amounts of data are to be stored. 

     Shields 
 One inexpensive alternative is to add an EEPROM shield to your  m c board. A  shield  is an additional board 
that can be attached to the  m c board either directly plugging the shield into the Arduino board or an Arduino 
module connected through cabling. Several companies offer EEPROM shields that use the I2C Wire library 
to communicate with the main  m c board. A 256K EEPROM shield can be found for less than $10. A quick 
search on the Internet should turn up several alternatives for you. 

 Another alternative is to use an SD (Secure Digital) card. Figure  10-7  shows an example. Figure  10-8  
shows the same SD card inserted into the shield and the shield “stacked” onto an Arduino  m c board.   

 



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

243

  Figure 10-7.    An SD card and shield       

  Figure 10-8.    Stacked SD shield and board. (Shield and  m c board courtesy of Seeed Studio.)       

 

 



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

244

 Note that the pins on the SD shield pass through the board to the headers directly above the pins. This 
is what allows another shield to be stacked onto this shield. This makes increasing the functionality of a  m c 
board quite easy. 

 The use of an SD shield increases the amount of storage available to the system significantly—into 
the gigabyte range. The board shown in Figures  10-8  and  10-9  supports both SD and micro SD cards and 
has UART, I2C, and SPI interfaces for increased flexibility. The vendor also has a format program (FAT16 
or FAT32) and sample code that can be downloaded. Despite this feature set, the shield sells for less than 
$5. Because the SD storage medium is easily removed, subsequent processing of the data can be done on a 
regular PC if needed. 

 Whereas an SD library is shipped with the Arduino IDE, some SD vendors have boards that make use of 
more advanced features. Read the documentation for the SD library carefully as certain pins must be used 
for the library to work properly. Make sure you buy a card that is compatible with the Arduino SD library or 
that the vendor gives you a source for their library. 

 The stacking is made easy by vendors supplying Arduino-compatible boards where the pins align 
properly with the  m c board. Note the header pins on the SD shield. This is done so you can stack yet another 
shield on top of the SD shield. These “Arduino Sandwiches” can go on as high as you want, provided you 
don’t exceed the current limits of the Arduino. Figure  10-9  shows the pins for the SD shield shown in 
Figure  10-8 , but from the underside of the shield. These are the pins that plug into the headers on the 
Arduino board.  

  Figure 10-9.    Pins for SD shield. (Photo courtesy of Seeed Studio.)       

 



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

245

   Other Uses for SD Storage 
 There are probably hundreds of projects you can think of that would benefit from additional storage. While 
additional EEPROM is one way to go, the addition of an SD shield offers the flexibility of removable storage. 
Figure  10-10  shows a GPS shield installed on a  m c board. The wire with a “caramel” attached to it is the GPS 
antenna.  

 It is possible to piggyback an SD shield and the GPS shield, add a 9V battery and then record the GPS 
data as you drive around town. Figure  10-11  shows the output using the Libelium software.  

  Figure 10-10.    A GPS shield. (GPS shield courtesy of Libelium.)       

 



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

246

 There are several GPS libraries available plus new ones coming on line all the time. Again, Google is 
your friend and searching for the latest library is just an “Arduino GPS library” search away. 

 The output from that software is shown in Figure  10-12 . Keep in mind that most Arduino libraries have 
an Examples subdirectory distributed with their libraries. These examples are a great way to learn how to use 
the library.  

  Figure 10-11.    Data from GPS shield viewed over a serial link       

  Figure 10-12.    GPS data using TinyGPS library       

 

 



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

247

 Depending on the GPS sampling rate you select to write to the SD card, you can actually plot on a street 
map where you’ve been while recording the GPS data. If you ever wondered where your teenage son  really  
went when he borrowed the family car, this might be your answer! A quick search on the Internet will likely 
produce lots of ideas for Arduino shields, including the GPS shield shown here. (More than 2 million hits 
occurred when I googled “Arduino GPS”.    

     typedef 
 I should mention that C provides a way for you to create a new data type from existing data types. For 
example, in Chapter   13     we discuss interrupts and these are often associated with unsigned 8-bit variables. 
These 8-bit variables are tied to various Arduino pins and are collectively called a  port . Although we could 
define a port as a  byte , since a  byte  is an unsigned 8-bit data item, it would make more sense to call it a port. 
You can do this kind of thing with a  typedef . The syntax would be: 

  typedef byte PORT;  
  PORT portC, portD;  

 Note that the  typedef  doesn’t really “create” a new data type. Rather, it lets you rename the data type. 
 PORT  does not have to be in uppercase letters, but that is a convention that most programmers use. Also 
notice that the  typedef  is really a declaration in that it creates an attribute list for the “new” data type. The 
second statement actually defines two variables using the  typedef  attribute list for  PORT . Proper use of 
 typedef s can make your code more readable. 

 Another common use for a  typedef  is to use them with structures. For example, Listing  10-11  presents a 
short program showing how to use a  typedef . 

    Listing 10-11. Using a typedef 

  typedef struct Students  
  {  
     char name[20];  
     int year;  
     float gpa;  
  } STUDENTS;  

  void setup() {  
    Serial.begin(115200);  
    STUDENTS myClass[20];  
    strcpy(myClass[0].name, "Jack Purdum");  
    myClass[0].year = 3;  
    myClass[0].gpa = 3.99;  // Never liked psychology  

    Serial.print("Name: ");  
    Serial.print(myClass[0].name);  
    Serial.print("   Class: ");  
    Serial.print(myClass[0].year);  
    Serial.print("   gpa: ");  
    Serial.println(myClass[0].gpa);  
  }  

  void loop() {  
  }   

http://dx.doi.org/10.1007/978-1-4842-0940-0_13


CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

248

 Note how the  typedef  encompasses the  struct  declaration. Also note how  Students  names the structure, 
whereas  STUDENTS  is the  typedef . 

 Many programmers find that  typedef s make it easier to read the code. My feeling is that it depends upon 
the complexity of the data’s attribute list. In all honesty, I probably use  typedef s less often than I should. 

 Another common use is to combine an  enum  with a  typedef : 

  typedef enum {RESIDENTIAL = 35, STATEROAD = 55, FEDERALHIGHWAY = 70} SPEEDS;  
  SPEEDS myState = STATEROAD;  

 In this case, we have an  enum  list that we treat as a new data type using the  typedef  keyword with 
the identifier for the new data type stated at the end of the statement. This allows us to have a shorter 
definition of the  myState  variable. Some programmers append an underscore and a t ( _t ) to the end of 
the  typedef  identifier to make it clearer that this is a  typedef . If you used this convention, the definition of 
 SPEEDS  would be written as  SPEEDS_t . If you do prefer one style over the other, just make sure you use it 
consistently. 

 It may appear that a  typedef  is really little more than a  #define  in a different set of clothes. Well, not 
really. First, a  typedef  can only work within the confines of existing data types. You cannot, for example, 
use a  typedef  for a value. Second, a  #define  is processed by the preprocessor and involves a simple textual 
replacement in the source code. A  typedef  is processed by the compiler, and since it works with “real” data 
types, it persists after the compiler is finished.  

     Summary 
 In this chapter you learned how to organize dissimilar data using the  struct  keyword. You also saw how a 
 union  may be used as a small buffer space in your programs and how it may save you a few bytes of memory. 
You also learned how to read and write to EEPROM. Although EEPROM memory has some disadvantages, 
like relatively slow access and limited recycling, it is an effective way of storing configuration data or data 
that is not likely to change often. Finally, you saw how shields can be used to extend the functionality of a  m c 
board, both in terms of storage (e.g., an SD shield) or features (e.g., a GPS shield). Always keep in mind that 
anytime you find yourself wishing the  m c board had more of something (like memory) or you wish it could 
do some additional feature (like a little Internet searching), chances are you’ll find a shield that can help 
solve your problem. 

 EXERCISES

     1.     In Listing  10-2 , it was asserted that  yourServicePeople.Phone  was unchanged 
after the function call. Is this true? Prove it. 

 Answer: Add these three lines to the bottom of the  setup()  loop: 

  Serial.println();  
  Serial.print("yourServicePeople.Phone rvalue: ");  
  Serial.println(yourServicePeople.Phone);  

 and recompile, upload, and run the program. You will see that the phone 
number member of  yourServicePeople.Phone  is unchanged and still has the 
value 0.  



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

249

    2.    When discussing the section on arrays of structures, you saw the definition: 

    struct servicePeople myCompanies[10] = {  
        {1, "This is a dummy","admin", 5555555},  
        {101, "Kacks Lawn Service", "Clowder", 2345678}  
    };  

 Clearly, the  Name  member of the first element in this array suggests that the 
data is garbage. Why would someone “throw away” this first element? 

 Answer: You could use this first element to maintain a count of the number of valid 
elements in the array. In other words, the ID member of the first element of the array has 
the value 1 stored in it. This means that there is 1 company currently filled in for the array, 
even though the array is capable of holding 10 elements. You could access the data for the 
last valid data element using: 

    int index;  
    int validCompanyID;  
    index = myCompanies[0].ID;  
    validCompanyID = myCompanies[index].ID;  

 You can simplify this considerably by using: 

    int validCompanyID;  
    validCompanyID = myCompanies[myCompanies[0].ID].ID;  

 Think about it. You could also use this information to prevent a loop from reading 
garbage data.  

    3.     The code in Listing  10-4  calls  WriteOneRecord()  ten times even though there 
are only four elements in the array that contain useful data. How could you 
avoid the redundant calls? 

 Answer: When the  myPeople[]  array is defined, 360 bytes of data (36 *  MAXPEOPLE ) are 
allocated to the array. Only the first 144 bytes (4 * 36) of the array contain information. 
Because this global data structure is defined with global scope, any uninitialized elements 
of the array are filled with 0s. However, EEPROM data that has never been written to is set 
to 0xFF (or –1 decimal). Therefore, you could modify the  for  loop in  setup()  to: 

         i = 0;  
         while (myPeople[i].ID != -1) {  
                         WriteOneRecord(i++);              // Copy to EEPROM  
         }   



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

250

    4.     The phone number displayed in Figure  10-6  is pretty lame. How would 
you spiff it up? 

 Answer: If you add  #include <stdlib.h>  at the top of the program (so the program knows 
about the long-to-ASCII,  ltoa(),  function), and then add the following code to the top of the 
 DataDump()  function: 

      char t[10];  
      char buffer[10];  
      ltoa(temp.Phone, t, 10);  // make long a char array  

      strcpy(buffer, t);  
      buffer[3] = '-';  
      strncpy(&buffer[4], &t[3], 5);  

 and then change the last  Serial.println()  to  Serial.println(buffer) , the program 
displays the phone number with a hyphen between the exchange and the number 
(e.g., 234-5678). You should be able to figure out what the code does now.  

    5.    What is a shield? 

 Answer: In terms of Arduino boards, shields are small boards that usually piggyback directly 
onto the  m c board. Each shield is designed to meet some specific need (i.e., more memory) 
or add a new feature (i.e., read GPS data). Most shields are surprisingly affordable.  

    6.    If a statement contains more than one dot operator, what should you do? 

 Answer: Just remember that the dot operator is like a key that lets you get inside a black 
box. Usually, multiple dot operators mean that you are accessing more than one  struct  or 
 union . In OOP languages, like C++, the dot operator is often used to access the members 
and methods of a class.  Serial.print()  is an example of using the dot operator to access the 
 print()  method (i.e., function) of the  Serial  class. In fact, OOP constructs are little more than 
a  struct  with functions (i.e., methods) defined within them … something you can’t do with 
straight C.  

    7.    Given the code at the top of Listing  10-11  

    typedef struct Students  
    {  
       char name[20];  
       int year;  
       float gpa;  
    } STUDENTS;  

    STUDENTS myClass[20];      // Make an array of them  

 initialize the first three elements of  myClass[]  with data of your choice and then 
display the array. 



CHAPTER 10 ■ STRUCTURES, UNIONS, AND DATA STORAGE

251

 Answer: 

    typedef struct Students  
    {  
      char name[20];  
      int year;  
      float gpa;  
    } STUDENTS;  

    void setup() {  
      int i;  

      Serial.begin(9600);  

      STUDENTS myClass[20] = {  
        {"Katie Mohr", 4, 3.30},  
        {"John Purdum", 1, 3.30},  
        {"Jane Holcer", 2, 3.80}  
      };  

      for (i = 0; i < sizeof(myClass) / sizeof(myClass[0]); i++) {  
        Serial.print("Name: ");  
        Serial.print(myClass[i].name);  
        Serial.print("   Class: ");  
        Serial.print(myClass[i].year);  
        Serial.print("   gpa: ");  
        Serial.println(myClass[i].gpa);  
      }  
    }  

    void loop() {  
    }  

 You should be able to figure out the code for yourself now.          



253© Jack Purdum 2015 
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming 
for the Arduino, DOI 10.1007/978-1-4842-0940-0_11

    CHAPTER 11   

 The C Preprocessor and Bitwise 
Operations      

     In Chapter   4    , Table   4-2     presented a list of the C preprocessor directives that are supported by Arduino C. In 
this chapter, we want to extend that discussion, plus cover a few additional details that should prove useful 
to you. In this chapter you will learn

•    What the C preprocessor does  

•   What parameterized macros are  

•   What bitwise operators are  

•   What the standard C header files are    

     Preprocessor Directives 
 The ANSI C specification details the duties of the C preprocessor. It is the function of the C preprocessor to 
process the defined directives supported by the C compiler. Table   4-2     lists the preprocessor directives that 
Arduino C can translate. In the previous sentence, the word “translate” is not a typo, as that is exactly what 
the preprocessor does: it translates the directives you have written into your code with whatever you have 
designated to be the replacement. For example, consider the following preprocessor directive: 

  #define FIRESENSOR 145  

 which would likely appear near the top of your source code file. Now further suppose that you later write the 
line: 

  if (currentSensor == FIRESENSOR) {  
     //...some code here to do something with the fire sensor state  
  }  

http://dx.doi.org/10.1007/978-1-4842-0940-0_4
http://dx.doi.org/10.1007/978-1-4842-0940-0_4#Tab2
http://dx.doi.org/10.1007/978-1-4842-0940-0_4#Tab2


CHAPTER 11 ■ THE C PREPROCESSOR AND BITWISE OPERATIONS

254

 The  if  statement here is what you see when you examine your source code. One of the first things the 
compiler does when you hit the compile button is run the C preprocessor. Conceptually, you can think of 
the C preprocessor pass as performing a global search-and-replace using all of the preprocessor directives 
you have written in your source code file. When the preprocessor finds the  if  statement, it substitutes the 
value 145 every time it finds FIRESENSOR in your source code. When the preprocessor has finished, the  if  
statement is transformed and the compiler sees your source code as though you wrote the  if  statement as: 

  if (currentSensor == 145) {  
     //...some code here to do something with the fire sensor state  
  }  

 The C preprocessor has translated all of your preprocessor directives into whatever substitution you 
wrote. Throughout this text you have used preprocessor directives to get rid of magic numbers in your source 
code. Rather than force you to flip back to Chapter   4    , Table   4-2     is repeated here as Table  11-1 .  

    Table 11-1.    Arduino C Preprocessor Directives   

 Directive  Action 

  #define NAME value   Ascribes the identifier  NAME  to the constant  value . 

  #undef NAME   Removes  NAME  from the list of defined constants. 

  #line lineNumberValue 
“filename.ino”  

 Allows the compiler to refer to any line numbers in the file named  filename.ino  
to be referenced as line  lineNumberValue  from this point on by the compiler. 
Normally used in debugging. This is not in the Arduino C reference material, 
but the compiler recognizes it. 

  #if definedConstant 
expression operand  

 Conditional compilation. Example: 

  #if LED == 12  
                      #define VOLTS 5  
  #endif  

 This is not in the Arduino C reference material, but the compiler recognizes it. 

  #if defined NAME  
       // statement(s)  
  #endif  

 Allows for conditional compilation of statements if  NAME  is defined. The 
statement block ends with  #endif . This is not in the Arduino C reference 
material, but the compiler recognizes it. 

  #if !defined NAME  
       // statement(s)  
  #endif  

 Same as  #if  defined, but processes the statement block only if  NAME  is not 
defined. This is not in the Arduino C reference material, but the compiler 
recognizes it. 

  #ifdef   Same as  #if  defined. This is not in the Arduino C reference material, but the 
compiler recognizes it. 

  #ifndef   Same as  #if !defined . This is not in the Arduino C reference material, but the 
compiler recognizes it. 

(continued)

http://dx.doi.org/10.1007/978-1-4842-0940-0_4
http://dx.doi.org/10.1007/978-1-4842-0940-0_4#Tab2


CHAPTER 11 ■ THE C PREPROCESSOR AND BITWISE OPERATIONS

255

 Directive  Action 

  #else   Can be used with  #if  like as  if-else  statement, but to control compiled 
statements. Example: 

  #if defined WINDOWS7  
                      #define BITS 64  
  #else  
                      #define BITS 32  
  #endif  

 This is not in the Arduino C reference material, but the compiler recognizes it. 

  #elif   Used with  #i f for cascading  #if ’s 

  #include “filename.xxx”   Opens the file named  filename.xxx  and reads the contents of the file into the 
program source code. Usually, if double quotes surround the file name, the 
search for the file is in the currently active directory. If the file is not found 
there, the search resumes in the default include directory path. If angle 
brackets are used ( <filename.xxx> ), the search is confined to the default 
include directory path. 

Table 11-1. (continued)

 You already know the  #define  directive and have used it in several programs. What we need to do here is 
just expand the information in Table  11-1  to make it a little clearer. 

     #undef 
 The  #undef is used to turn off a previously defined #define preprocessor directive.  For example, suppose you 
have a source file with something like the following code in it: 

  #ifdef DEBUG  
     Serial.print("The counter value is: ");  
     Serial.println(myCounter);  
  #endif  

 This is a technique (called  scaffolding , remember?) that you have used before to toggle debugging code 
into the program. If the source contains 

  #define DEBUG 1  

 at the top of the source file, then the two  Serial  object method calls are compiled into the program. You can 
also write the directive simply as 

  #define DEBUG  

 without the 1 digit, and it will still behave the same. Why? The reason is because we plan on using DEBUG in 
a  #ifdef  expression. A  #ifdef  doesn’t care if there is a value or not, just whether it has been defined or not. Still, 
this old dog has always used the first form with the 1 digit present, so that’s what we’ll use in the examples 
that follow. 



CHAPTER 11 ■ THE C PREPROCESSOR AND BITWISE OPERATIONS

256

 Now let’s suppose the function that contains the debug code is named  ReadSensorCounter()  and 
that you finally have that function working perfectly. You could “shut off” the all of the debug code in the 
source file by simply removing or commenting out the  #define DEBUG 1  line in the program. Because the 
preprocessor would no longer see the  #define  for  DEBUG , the  Serial()  debug code is not compiled into the 
program. 

 However, that’s not an optimal solution because you may still have more debugging to do in other 
parts of the source file. If that’s the case, cut-and-paste the  ReadSensorCounter()  function source code to 
the end of the source code file and add a  #undef  just above it in the source file, as seen in the following code 
fragment: 

  #define DEBUG 1  
  //  
  // A whole bunch of program lines  
  // that still need to be debugged  
  //  
  #undef DEBUG  
  ReadSensorCounter()  {  
  // code for the debugged function  
  }  

 When the preprocessor sees the  #undef  directive, it removes  DEBUG  from its list of  #define ’s. This has 
the effect of removing the  Serial()  calls from the (now debugged)  ReadSensorCounter()  function. However, 
because the  #undef  is at the bottom of the source file, all of the other  #define DEBUG  scaffolding code 
is compiled into the program because  DEBUG  is still defined everywhere above the point of the  #undef  
directive. Therefore, the  #undef  directive gives you a way to undefine a previously defined preprocessor 
directive. By moving the source code for debugged functions after the  #undef  directive, you can leave in 
the scaffolding code you still need with undebugged code without cluttering up the debug statements with 
 Serial  output statements from code that already works. 

 If something happens down the road and the  ReadSensorCounter()  function starts acting up again, 
just remove the  #undef  and the  Serial  statements are automatically recompiled back into the program the 
next time you hit the compile button. By using the  #undef  directive, you don’t have to retype in the  Serial  
statements into the code again. While the  #undef  can be used for other purposes, toggling scaffold code into 
and out of a program is a fairly common use.  

     #line 
 The  #line  directive is used most often while debugging a program. The syntax is 

  #line lineNumberValue "filename.ino"  

 where  lineNumberValue  is the line number you want to the compiler to use from that point on in the source 
code file name filename.ino. Therefore, 

  #line 100 "C:\Temp\myCode.ino"  

 tells the compiler to reference the next line number as line 100 for the source file name  myCode.ino . This 
directive is useful when your program reads in one or more header files. For example, suppose your source 
file begins with 

  #include <stdio.h>  



CHAPTER 11 ■ THE C PREPROCESSOR AND BITWISE OPERATIONS

257

 and your program has an error on line 10. If file  stdio.h  has 22 lines in it and your program finds an error 
at source code line 10, the error message will say the error is at line 32. This can get confusing, especially if 
the compiler isn’t really adept at counting source code lines when include files are used. Fortunately, the 
Arduino compiler does a good job of counting lines. In fact, it does not count the lines in header files. Not all 
IDEs behave this way. 

 As an experiment, however, try placing the  #line  directive in one of your programs and change the file 
name to the file that you are working on. You will see that the line number does change according to the line 
number you specify in the  #line  directive.  

     #if, Conditional Directives 
 There are a number of conditional directives, and they are very similar, so we can discuss them as a group. 
First, the expression 

  #if definedConstant expression operand  
  // Statement(s)  
  #endif  

 might be written as: 

  #if BOARD == ATMEGA168  
      #define MAXEEPROM   1024  
  #endif  

 In this example, if  BOARD  is defined as  ATMEGA168 , then  MAXEEPROM  is set to 1024. The  #endif  
directive is necessary to complete the directive for the compiler. You can have multiple statements 
controlled by the conditional directive. 

 The directive 

  #if defined BOARD  

 might be used as: 

  #if defined BOARD  
          #define MAXEEPROM   1024  
  #endif  

 In this case, however, it doesn’t matter how  BOARD  is defined,  MAXEEPROM  is set to 1024 as long as 
there is a  #define  for  BOARD . 

 The directive 

  #if !defined expression  

 is the negative of the previous directive. That is: 

  #if !defined BOARD  
          #define MAXEEPROM   1024  
  #endif  



CHAPTER 11 ■ THE C PREPROCESSOR AND BITWISE OPERATIONS

258

 This says that if  BOARD  has  not  been  #define’ d in the program,  MAXEEPROM  gets set to 1024. This 
directive can also be written using the  #ifndef  in the same manner: 

  #ifndef BOARD  
          #define MAXEEPROM   1024  
  #endif  

 The result is exactly as before: If  BOARD  has not been  #define ’d in the program,  MAXEEPROM  is set to 
1024. 

   #else, #endif 
 All of the conditional preprocessor directives must end with a  #endif  directive. However, you can have an 
 if-else  type of directive by using  #else : 

  #ifdef BOARD  
          #define MAXEEPROM   1024  
  #else  
          #define MAXEEPROM   512  
  #endif  

 In this case, if  BOARD  is defined,  MAXEEPROM  is set to 1024; otherwise it is set to 512. This gives you a 
little more flexibility for setting  MAXEEPROM . 

 Finally, you can also use  #elif  to form a cascading  if  statement, as in: 

  #if BOARD == ATMEGA168  
          #define MAXEEPROM   512  
  #elif BOARD == ATMEGA2560  
          #define MAXEEPROM   4096  
  #else  
          #define MAXEEPROM   1024  
  #endif  

 The  #elif  simplifies the code from what it would be if the directive was not used.   

     #include 
 The  #include  directive is used to read in header files into your program. As a general rule, header files do 
not contain executable code. That is, you should not use header files to define functions that you wish to 
use in your programs. Header files are properly used for data declarations, not definitions. (The exception is 
parameterized macros that can act like code definitions. More on that in the next section.) You have used the 
 #include  directive before, but I never fully discussed what it does. Simply stated, the  #include  directive 

  #include <stdio.h>  

 causes the compiler to read the  stdio.h  header file into your program as though its contents are part of your 
program’s source code. Surrounding the file name with angle brackets ( <> ) causes the compiler to look in a 
compiler-specific default directory for the header file. With the Arduino IDE, the compiler looks in the 
 \hardware\tools\avr\avr\include  directory for the file. (For contributed libraries, like you find in the 
libraries subdirectory, those header files are included using either the double quotes or brackets. Not all 



CHAPTER 11 ■ THE C PREPROCESSOR AND BITWISE OPERATIONS

259

IDEs behave this way.) If you replace the brackets with double quotation marks ( #include “myheader.h” ), the 
compiler looks in the current working directory for the include file. Include files are a convenient place to 
store  #define ’s or other preprocessor information that is specific to the source file being compiled. It is also 
common to find function declarations (i.e., function prototypes) in header files, too. 

 You may wish to spend some time examining the standard header files supplied with the compiler, as 
there are a number of function declarations and parameterized macros that should prove very useful to you. 
Table  11-2  presents some of the “don’t miss” header files.  

   Table 11-2.    Standard C Header Files   

 Header file name  Description 

  stdio.h   Standard I/O header file with macro for file redirection and most file I/O 

  stdlib.h   Memory allocation functions, string conversions, value-to-ASCII conversions 

  string.h   A host of memory and string processing declarations 

  math.h   Math declarations, symbolic constants (e.g., pi), transcendental declarations 

  ctype.h   Character processing declarations (e.g.,  isalpha() ) 

 It would be well worth your time to browse through all these files, as you are sure to find some nuggets 
that you can use in your programs. If nothing else, you will see function prototypes and macros that could 
prove very useful to you.   

     Parameterized Macros 
 If you look in the  stdio.h  header file, there’s some pretty scary stuff, like this: 

  #define feof(s) ((s)->flags & __SEOF)  

 You already understand what the  #define  means, but what does all the rest of the line say? Recall what a 
 #define  does to the source code: it causes a textual replacement to occur in the source file. So, if you wrote a 
source line 

  int myEndOfFile = feof(fileStream);  

 that line would look like 

  int myEndOfFile = ((fileStream)->flags & 0x0020);  

 when the preprocessor pass finished because  __SEOF  was also  #defined  to be 

  #define __SEOF  0x0020           /* found EOF */  

 in the  stdio.h  header file. To understand what all of this means, you need to understand bitwise operators. 
 To help you understand bitwise operators, let’s build a simple circuit that simply connects eight LEDs to 

the digital pins 4–11. We use a 220-ohm current-limiting resistor on each LED. (Any value between 150 and 
680 ohms should work just fine.) The circuit is shown in Figure  11-1 .  



CHAPTER 11 ■ THE C PREPROCESSOR AND BITWISE OPERATIONS

260

 Now, let’s write a short program to demonstrate how binary data looks for a byte. The first attempt at the 
code is presented in Listing  11-1 . 

     Listing 11-1. Simple LED Display 

  int ledPin[] = {4, 5, 6, 7, 8, 9, 10, 11};  
  #define ARRAYLENGTH(x)  (sizeof(x) / sizeof(x[0]))  

  void setup()  
  {  
    for (int i = 0; i < ARRAYLENGTH(ledPin); i++)  
    {  
      pinMode(ledPin[i], OUTPUT);  
    }  
  }  

  Figure 11-1.    A binary LED display       

 



CHAPTER 11 ■ THE C PREPROCESSOR AND BITWISE OPERATIONS

261

  void loop()  
  {  
    for (int i = 0; i < ARRAYLENGTH(ledPin); i++)  
    {  
      digitalWrite(ledPin[i], HIGH);  
      delay(500);  
      digitalWrite(ledPin[i], LOW);  
    }  
  }   

 The purpose of this short program is really to see if the circuit works properly. If so, each LED lights 
in sequence for a half second, moves to the next LED, and then the process repeats itself. Note the 
parameterized macro  ARRAYLENGTH() . We use this macro to control the number of elements that are read 
in the program’s  for  loops. The breakdown of the macro is: 

  #define ARRAYLENGTH(x)       (sizeof(x) / sizeof(x[0]))  
  #define ARRAYLENGTH(ledPin)  (sizeof(ledPin) / sizeof(ledPin[0]))  
  #define ARRAYLENGTH(ledPin)  (16 / 2)  
  #define ARRAYLENGTH(ledPin)  (8)  

 The macro correctly returns eight elements for the  ledPin[]  array. It works by using the  sizeof()  operator 
to determine the total array size (i.e., 16 bytes) and then divides that number by the size of one element in 
the array (i.e., 2 bytes for an  int ). The really useful thing about this macro is that you can use it with any data 
type . . . it is a “typeless” macro. You could write the equivalent as a  const int  statement 

  const int arrayLength = (sizeof(ledPin) / sizeof(ledPin[0]));  

 but if you do, it can only be used with a specific array type. In this example, you could only use it with  int  
arrays. The parameterized macro is more flexible. 

 The code should look pretty familiar to you by now. The  setup()  code simply sets all of the LED pins to 
be used for OUTPUT using a  for  loop. The  loop()  code simply walks through the LEDs and turns each one on 
and off for a half second. Pretty simple, but it is a good way to make sure that things are connected correctly, 
as we will expand this code in the next section to make it a little more useful.  

     Decimal to Binary Converter 
 Let’s modify Listing  11-1  to accept a decimal number between 0 and 255 and display it on the LEDs as a 
binary representation. Listing  11-2  shows the modified program. 

    Listing 11-2. Decimal to Binary Converter 

  int ledPin[] = {4,5,6,7,8,9,10,11};  
  #define ARRAYLENGTH(x)  (sizeof(x) / sizeof(x[0]))  

  void setup()  
  {  
    Serial.begin(9600);  
    for (int i = 0; i < ARRAYLENGTH(ledPin); i++)  
    {  
      pinMode(ledPin[i], OUTPUT);  
    }  
  }  



CHAPTER 11 ■ THE C PREPROCESSOR AND BITWISE OPERATIONS

262

  void loop()  
  {  
    char buff[4];  
    int charsRead;  
    int val;  

    if (Serial.available() > 0) {  
      charsRead = Serial.readBytesUntil('\n', buff, 3);  
      buff[charsRead] = '\0';  
      val = atoi(buff);  
      if (val > -1 && val < 256) {  
        DisplayBinaryDigit(val);  
      }  
    }  
  }  

  void DisplayBinaryDigit(byte num)  
  {  
    for (int i = 0;i < ARRAYLENGTH(ledPin);i++)  
    {  
      if (bitRead(num, i) == 1) {  
        digitalWrite(ledPin[i], HIGH);  
      } else {  
        digitalWrite(ledPin[i], LOW);  
      }  
    }  
  }   

 The code before and up to  loop()  is the same as Listing  11-1 . In  loop() , the code waits for the user to 
enter a number and press the Enter key of the  Serial  monitor using the  Serial.available()  method call. The 
 readBytesUntil()  method of the  Serial  object is very handy. The first argument (the newline character,  ‘\n’ ) 
says to keep fetching keystrokes until you read a newline character, but ignore anything after you have read 
three characters (the third argument in the method call). Each keystroke by the user is stuffed into the  buff[]  
array, which is the second argument in the method call. The  readBytesUntil()  method returns the number of 
characters that were read into the character array,  buff[] . 

 Because we want to convert what the user entered from  chars  to an  int , we need to use the  atoi()  (ASCII 
to  int ) function from the standard C library. However,  atoi()  expects the argument to be a string, which 
means we must take whatever the user entered via the  Serial  monitor, and add a null to it to form a string. 
This is easy because  charsRead  holds the number of characters entered by the user. The statement 

  buff[charsRead] = '\0';  

 adds the  null  character in the proper element of the array. Because the return count does not include the 
 '\n'  character in its count, the previous statement overwrites the newline character with a null. For example, 
if you enter the digit characters 1 and 0, those two keystrokes are assigned to elements  buff[0]  and  buff[1] . 
However, since two characters where entered (i.e.,  charsRead  equals 2), the statement means  buff[2]  receives 
the  null  character, thus forming a string, and all’s right with the world. The next line then uses the call to 
 atoi(buff)  to convert the characters entered by the user to an  int  with the value of 10. If the value is within 0 
and 255, we call  DisplayBinaryDigit(val)  to display the value in binary (i.e., base 2). 



CHAPTER 11 ■ THE C PREPROCESSOR AND BITWISE OPERATIONS

263

 The  bitRead()  function is used to read a specific bit in  num . If the bit at location  i  is  HIGH  (i.e., a 1), the 
corresponding LED is turned on. If the bit is  LOW , the associated LED is turned off. Control then returns to 
 loop()  and waits for another input by the user. 

 Turn back to Table   3-2     and you can easily understand the LED output you see when you alter the 
numeric values. You may want to run this program as you read the rest of this chapter. Figure  11-2  shows 
what the breadboard might look like after you build the circuit.  

  Figure 11-2.    Building the binary converter       

     Bitwise Operators 
 Arduino C provides you with four bitwise operators: AND, OR, XOR, and NOT. The first three operators are 
binary operators and hence require two operands in the expression. The bitwise NOT operator is a unary 
operator and uses only a single operand.  Bitwise operations can only be performed on integer data  (i.e., no 
floating point data). Individual bits do not treat those bits as a (32-, 16-, or 8-bit) unit or number. It is not 
uncommon to find the bitwise operators being used in conjunction with various external hardware devices 
to extract information from the device. Some examples of each will help you to understand how bitwise 
operators work. 

   Bitwise AND 
 The bitwise AND operator is a single ampersand ( & ) and performs a binary AND between the corresponding 
bits of the two operands. Keep in mind that bitwise operators are single characters (e.g.,  & ), whereas logical 
operators typically use two characters ( && ). Confusing the bitwise and logical operators is a flat forehead 
mistake waiting to happen . . . and it will. Expect it to happen, and learn from it. 

  The result of the bitwise AND operation is such that the resultant bit is 1 if, and only if, both operand bits 
are 1 . For example, suppose you have an external sensor that sends you information over a serial link to the 
 m c board. To save time, the sensor packs two pieces of information into each byte. Assume the low  nibble  

 

http://dx.doi.org/10.1007/978-1-4842-0940-0_3#Tab2


CHAPTER 11 ■ THE C PREPROCESSOR AND BITWISE OPERATIONS

264

(4 bits is called a  nibble  . . . for real, just like 8 bits are called a  byte ) contains the sensor’s data and the high 
nibble contains the sensor number that generated the data. 

 The  truth table  for the bitwise AND is shown in Table  11-3 . A  truth table shows you all possible results 
from a bitwise operation . Reading the first row, if both bits are 0, the result is 0. If one bit is 1 but the other is 
0, the result is 0. Only when both bits are 1 is the result 1.  

   Table 11-3.    Bitwise AND Truth Table   

 Bit 1  Bit 2  Result 

 0  0  0 

 1  0  0 

 0  1  0 

 1  1  1 

 In code, the bitwise AND might look like this: 

  byte a = 10;        // 00001010  
  byte b = 6;         // 00000110  
  byte c = a & b;     // 00000010  

 Note that a result bit has a value of 1 only when both operand bits are 1. In this example, only bit 1 has a 
value of 1. 

 In Table   3-2    , you saw how the bits contained in a byte are interpreted. Suppose the sensor device sent 
the byte 

  00110101  

 to your code. How would you determine what the data is and which sensor sent it? Simple! You would use 
the bitwise AND operator. The hardware specs tell you that the low 4 bits hold the data and the high 4 bits 
holds the sensor number that sent the data. We can separate the data using “bitwise masks” to extract the 
information. Because a bitwise AND sets a result bit if—and only if—the bit position of the data and of the 
mask are both 1, you find that: 

  00111010                // The sensor data--operand1  
  00001111                // The low nibble mask--operand2  
  ---------  
  00001010                // Bitwise AND result using the two operands  

 The low 4 bits in the mask are all set to 1s because we need to know the data held in all 4 low bits (i.e., 
the low nibble). The rightmost bit in the sensor data is a logic 0, but the low bit of the mask is a 1. Because a 
bitwise AND only has a bit value of 1 when both operand bits are 1, the low bit of the result is 0. The second 
bit is 1 in the sensor data ( operand1 ), and also a 1 in the mask. A bitwise 1 with 1 always results in 1, so the 
result is 1 for the second bit. The third bit in the sensor data byte ( operand1 ) is 0 while the mask ( operand2 ) 
is 1. Therefore, the result is 0. The fourth bit is 1 in the data and 1 in the mask, so the result is 1. Because we 
don’t care about the high nibble when looking for the data, the rest of the mask is all 0’s. If you look at 
Table   3-2    , a byte with the binary value of 00001010 has a decimal value of 10. You now know that the data 
value sent from the sensor is 10. 

http://dx.doi.org/10.1007/978-1-4842-0940-0_3#Tab2
http://dx.doi.org/10.1007/978-1-4842-0940-0_3#Tab2


CHAPTER 11 ■ THE C PREPROCESSOR AND BITWISE OPERATIONS

265

 So, which sensor sent the data? The device documentation says that the sensor number is held in the 
4 high bits (i.e., the high nibble). To determine this, you redefine the mask to look at the high 4 bits: 

  00111010                // The data  
  11110000                // The high nibble mask  
  ---------------  
  00110000                // Bitwise AND result—the device  

 If you only look at the high 4 bits (i.e., 0011), you can see that this would represent sensor number 3 of 
the device. (You will see in a moment exactly how to extract this information.) 

 As you can see, bitwise AND is often used to strip away unused bits from data so you can extract the 
information that you need.  

   Bitwise OR 
 A  bitwise OR operator  employs the single vertical bar ( | , or  pipe ) operator and is used to set a bit when  either  
operand bit has a value of 1. Only when both operand bits are 0 is the resultant bit 0. The bitwise OR truth 
table is presented in Table  11-4 .  

   Table 11-4.    Bitwise OR Truth Table   

 Bit 1  Bit 2  Result 

 0  0  0 

 1  0  1 

 0  1  1 

 1  1  1 

 In code, a bitwise OR fragment might be written as: 

  byte a = 10;       // 00001010  
  byte b = 6;        // 00000110  
  byte c = a | b;    // 00001110  

 Note that a  result bit has a value of 1 when either or both of the operand bits is a 1 . Contrast this with the 
bitwise AND. 

 Quite often a bitwise OR is used to set a bit when communicating with an external device. For example, 
perhaps the device has a communication register where a 1 in bit position 3 means it’s okay for the device 
to send a byte to the controller board. Perhaps the device documentation says that the content of the 
communication register should be OR’ed with the communication’s byte. In that case, you want to send a 
byte to the register with bit 3 set: 

  00000100        // Communication byte to device to set bit 3 (operand1)  
  00000000        // Look for a communication byte (operand2)  
  ------------  
  00000100        // Bitwise OR result  

 As a result, the device knows that it’s okay to send a byte of data back to the  m c board. The bitwise OR is 
often used to read/set register bits.  bitwise OR is often used to combine data fields .  



CHAPTER 11 ■ THE C PREPROCESSOR AND BITWISE OPERATIONS

266

   Bitwise Exclusive OR (XOR) 
 The bitwise exclusive OR, also known as XOR, uses the carat operator ( ̂  ).  An XOR operation results in 1 only 
when the two  operands  are different, and 0 when they are the same . The truth table for bitwise XOR is shown 
in Table  11-5 .  

   Table 11-5.    Bitwise XOR Truth Table   

 Bit 1  Bit 2  Result 

 0  0  0 

 1  0  1 

 0  1  1 

 1  1  0 

 Using our code fragment 

  byte a = 10;        // 00001010  
  byte b = 6;         // 00000110  
  byte c = a ^ b;     // 00001100  

 note that a result bit has a value of 1 only when both operand bits are different. 
 What’s interesting about an XOR operation is that if you call variable  b  the XOR mask, and XOR the 

result of the preceding code fragment (variable  c ) with the same mask, 

  byte a = 12;           // 00001100 – the result from the first XOR  
  byte b = 6;            // 00000110 – the XOR mask  
  byte c = a ^ b;        // 00001010 – the result; the original value  

 then the result is the original value for variable  a!  Because XOR operations have this effect on the data, you 
will often find XOR operations done on pixel data to invert an image. XOR’ing a second time restores the 
original image.  

   Bitwise NOT (~) 
 The bitwise NOT operator uses the tilde character ( ~ ) as its operator. The bitwise NOT is a unary operator; it 
only requires one operand. A bitwise NOT operation simply “flips the bits” of its argument. That is, all 0 bits 
become 1s and all 1 bits become 0s. The bitwise NOT operator truth table is shown in Table  11-6 .  

   Table 11-6.    Bitwise NOT Truth Table   

 Bit 1  Result 

 0  1 

 1  0 



CHAPTER 11 ■ THE C PREPROCESSOR AND BITWISE OPERATIONS

267

 For example: 

  byte a = 1;     // 00000001  
  byte c = ~a;    // 11111110  

 Therefore, the bitwise NOT on the decimal value 1 results in a value of 254. The  byte  data type is an 
 unsigned  data type, so only positive value are possible (0–255). 

 This can cause some interesting problems if you use  signed  data with a NOT operator. For example, 

  int a = 1;        // 00000000  00000001  
  int  c = ~a ;     // 11111111  11111110  

 which sets the sign bit (i.e., bit 15), resulting in a value of –32,766 and not 65, 534. Because of the 
interpretation of the sign bit, most bitwise NOT operations are done on  unsigned  data.   

     Bitwise Shift Operators 
 C allows you to shift bits of an operand. There are two types of bit shifts: a right shift that uses the  >>  
operator, and a left shift that uses the  <<  operator. The shift operators are binary operators using the 
following syntax: 

  result = valueToShiftLeft << numberOfPositionToShift            // left shift  

 and 

  result = valueToShiftRight >> numberOfPositionToShift           // right shift  

 Let’s take a look at each of these operators. 

   Bitwise Shift Left (<<) 
 The shift left bitwise operator simply shifts the bits to the left N bit positions, where N is the number of 
positions to shift the bits. For example: 

  byte a = 5;                  // 000000101  
  byte result = a << 1;        // 000001010 = result  

 In this example, the bits are shifted left by one position. This changes the value of  a  from 5 to 10. 
 This behavior leads to an interesting fact:  rotating the bits one position to the left multiplies the original 

value by 2 . The statement 

  byte result = a << 2;        //  000010100 = result  

 shifted the bits two positions to the left. If you convert the binary value for  result , you’ll find that  result  now equals 
20. Because each shift-left bitshift doubles the value, two positions causes a multiplier of 4 (i.e., 2 * 2 = 4), which 
yields a final value of 20 (i.e., 5 * 4 = 20). If you shifted the bits three positions, then  result  is 40 (i.e., 5 * 2 * 2 * 2). 

 There is a  caveat  to this rotating-doubling fact: the topmost bit of each rotation “falls off the end.” That 
is, any bit in the high bit position is lost when the shift-left takes place. Therefore, if you shifted any byte 
of data eight positions to the left, the value will be 0 because you “over shifted” all the data in the byte into 
oblivion.  



CHAPTER 11 ■ THE C PREPROCESSOR AND BITWISE OPERATIONS

268

   Bitwise Shift Right (>>) 
 A bitwise shift right is the opposite of a bitwise left shift. With a right shift,  each bit moves one position to the 
right . Any data in the lowest bit also “falls off the end.” For example: 

  byte a = 10;                  // 000001010  
  byte result = a >> 1;         // 000000101 = result  

 As you would expect, a shift right by one bit position has the effect of dividing by two. However, if we 
take the result of 5 and shift it one more position to the right 

  byte a = 5;                  // 000000101  
  byte result = a >> 1;        // 000000010 = result  

 it produces a result of 2. This is also a divide-by-2 operation, but the lowest bit is lost in the shift so the result 
is 2, not 2.5. This is as it should be since integer division cannot have a fractional value. 

 Bit shifting is an extremely fast operation at the register level. That is, multiply-and-divide operations 
take many assembly-level instructions to arrive at a result. However, shifting the contents of a register is a 
single instruction. For that reason, some optimizing compilers look for “powers of 2” math operations on 
integer data, and do shifts instead.    

     One More Example 
 Recall from our discussion in the section on the bitwise AND operator a device with sensors that returned 
data to the  m c board. Specifically: 

  00111010                // The data  

 The data returned from the device was 00111010. The high 4 bits was the sensor number of the device 
that sent the data, and the low 4 bits is the data value from the sensor. So, how can you extract the data and 
sensor number? Consider the following code fragment: 

  byte sensorByte = ReadDevice();         // sensorByte equals 00111010 after the call  
  byte sensorData = sensorByte & 15;      // 15 = 00001111  
  byte sensorNumber = sensorByte >> 4;    // 00110101 >> 4 = 00000011  

 If you work through the statements, you will find that  sensorData  now equals 10, which is the value of 
the four lowest bits (1010). Bit shifting the data byte four positions to the right has the effect of “throwing 
away” the lowest data nibble, leaving a binary result of 00000011, or a value of 3. Therefore, you now 
know that sensor number 3 returned a data value of 10. This “bit packing” lets you transmit two pieces of 
information in a single byte rather than using two separate function calls to read the device. 

 It should be noticed that bitwise AND and OR have compound equivalents. That is, the statements 

  int a = 5;  
  // Some code  
  a =  a & 10;  
  // Some more code  
  a = a | 3;  



CHAPTER 11 ■ THE C PREPROCESSOR AND BITWISE OPERATIONS

269

 may also be written as: 

  int a = 5;  
  // Some code  
    a &= 10;          // Note abbreviated operator  
  // Some more code  
    a |= 3;           // Same here...  

 Personally, I think the compound versions take a bit more thinking when you read them in code vs. the 
simple use of the operators. Still, you have the option if you wish to exercise it. 

     Using Different Bases for Integer Constants 
 Sometimes it is easier to understand what a statement means if a different numbering system is used. For 
example, you could rewrite the previous sensor data extraction statement as 

  byte sensorData = sensorByte & B00001111;  

 which expresses the constant as a binary value. (Note the B before the binary representation of 8-bit data.) 
Likewise, the same statement could be expression in hexadecimal as: 

  byte sensorData = sensorByte & 0x0F;  

 Many programmers who write code for  m cs are comfortable with hex because it is so often used with 
assembly language programming. You can also express constants using the octal (base 8) numbering system 
if you wish. (You should use zero-Oh when using octal, as in 0O123, so the compiler is clear that you wish to 
use octal. The leading zero-Oh is unfortunate because zeroes and Ohs look very much the same.) 

 Whatever numbering system you decide to use with your integer constants, you should be consistent 
when using them.  

     Parameterized Macros . . . Continued 
 All the discussion about the bitwise operators was triggered because of a parameterized macro that appears 
in the  stdio.h  header file. (The macro name  feof()  comes from filestream end-of-file, which is used to sense 
the end of a file.) The macro was: 

  #define feof(s) ((s)->flags & __SEOF)  

 In that discussion, you also saw that  __SEOF  was  #define’ d as the hex constant 0x20. 
 Therefore, the expression expanded to 

  int myEndOfFile = ((fileStream)->flags & 0x0020);  

 which you now know can be rewritten as: 

  int myEndOfFile = ((fileStream)->flags & B00100000);  

 If you read the comment in the  stdio.h  header file, you will discover that the purpose of this statement 
is to mask off the end-of-file bit to see if the end of file (EOF) has been read. The statement uses a pointer to 
read the value of the flags variable and then masks off the sixth bit to see if EOF was read. 



CHAPTER 11 ■ THE C PREPROCESSOR AND BITWISE OPERATIONS

270

 Why use a parameterized macro? The reason is because  macros generate inline code , thus saving the 
overhead of a function call. If the macro is found in a tight loop, the time savings could be noticeable.   

     Summary 
 In this chapter we added a little more detail to the preprocessor directives that are available to you. You 
also learned about parameterized macros, as they are sometimes found in various header files. Also, you 
learned how to use the bitwise operators. Understanding how bitwise operators work is often needed when 
communicating with external devices over some form of data link. You will also find the bitwise operators 
useful if you do a lot of interrupt programming. 

 EXERCISES

     1.     Write a preprocessor directive that sets pin 14 to OUTPUT if the development system 
is using Windows to host the compiler or to INPUT under any other host system. 

 Answer: 

                  #define WINDOWS 1  
                  // Some code...  
                  int pin14;  

                  #ifdef WINDOWS  
                          pin14 = OUPUT;  
                  #else  
                          pin14 = INPUT;  
                  #endif   

    2.     Suppose you've written some macro that you want to include in your program. 
They are currently stored in a file named  myheader.h . How would you write the 
statement to include the header file? 

 Answer:    The statement would be:  
                   #include "myheader.h"  

 You would use the double quote marks instead of the angle brackets ( <> ) because the 
header is likely to be found in your development directory.  

    3.     If you have an integer value  k  and wish to multiply it by 2 and assign the result 
into variable  j , what statement would you use? 

 Answer: 
  j = k * 2;  

 Just because you know how to shift bits doesn’t mean that’s the way you should do a simple 
multiply. If your code is doing something in a really tight loop and you want to see if bit shifting 
makes a difference, go ahead and experiment. However, if you do the multiplication with bit 
shifts, make sure you put a comment in the code to explain what you’re doing. Keep in mind 
that it is estimated that 80% of software development time is spent on testing and debugging. 



CHAPTER 11 ■ THE C PREPROCESSOR AND BITWISE OPERATIONS

271

Anything you can do to make a section of code easier to read is usually a good thing. Using bit 
shifts in place of the multiply operator rarely makes things easier to read.  

    4.    What types of data would you consider using for bitwise operations? 

 Answer: You would use  byte ,  unsigned int , and  unsigned long  data types. 
You would likely want to use  unsigned  data types so there’s no interpretation 
problems involving the sign bit.  

    5.     An external device returns data in the lowest six bits of a data byte. The top two 
bits can be ignored. How would you write the code to extract the data? 

 Answer: 
  byte myData = deviceByte & B00111111;  

 You could also write the statement as: 

  byte myData = deviceByte & 63;      // Decimal  
  byte myData = deviceByte & 0x3F     // Hex  
  byte myData = deviceByte & 0O77;    // Octal—with a leading zero-oh"  

 This would also work. Your actual choice depends upon what you think is easiest to read or 
perhaps some policy where your work dictates the format.  

    6.     If you perform a bit shift operation that shifts bits “off the end,” where do those 
bits go? 

 Answer: I don't know either . . . rumor is they fall into a bit bucket.  

    7.     Okay, at least you’re reading the exercises . . . good for you! As a reward, let’s 
modify Listing  11-2  to work with some of the bitwise operators. The lazy reader 
won’t even know this program is here! First, however,  please  try to write the 
code yourself. The only way to learn is by doing when it comes to programming. 
The code uses the circuit in Figure  11-1 . 

 What we want is to test the bitwise operators for AND, OR, XOR, and NOT. These will 
be assigned the numeric values of 1 to 4, respectively. Because all but NOT are binary 
operators, the user will enter the bitwise test to use plus the two operands, separated by 
commas. For example, to perform a logical OR of the values 33 and 85, the user would type 
 2,33,85  into the  Serial  monitor. The program should then show the results on the LEDs from 
the bitwise operation. If you can code this on the first try, then you’re ready for just about 
anything. 

 Answer: The code is as follows. 
  /*  
    Bitwise operator test. The user can test the AND,  
    OR, XOR, and NOT bitwise operators. The user enters  
    test data using the Serial monitor in the form:  



CHAPTER 11 ■ THE C PREPROCESSOR AND BITWISE OPERATIONS

272

      TestToPerform,Operand1,Operand2  

     As it stands, the comman operator separates fields  
     in the input stream  

     Dr. Purdum, December 24, 2014  
  */  

  #define AND  1  
  #define OR   2  
  #define XOR  3  
  #define NOT  4  

  #define COMMA  ","    // Used to separate input arguments  

  int ledPin[] = {4, 5, 6, 7, 8, 9, 10, 11};  
  #define ARRAYLENGTH(x)  (sizeof(x) / sizeof(x[0]))  
  int GetBitwiseTestParameters(int *which, int *op1, int *op2);  

  void setup()  
  {  
    Serial.begin(9600);  
    for (int i = 0; i < ARRAYLENGTH(ledPin); i++)  
    {  
      pinMode(ledPin[i], OUTPUT);  
    }  
     Serial.println("Bitwise Operators: 1 = AND, 2 = OR, 3 = XOR, and 
4 = NOT");  

     Serial.println("Enter Bitwise Operator COMMA Operand1 COMMA 
Operand2");  

  }  

  void loop()  
  {  
    int whichTest = 0;  
    int operand1;  
    int operand2;  

    GetBitwiseTestParameters(&whichTest, &operand1, &operand2);  
    if (whichTest != 0) {  
      ShowTest(whichTest, operand1, operand2);  
      whichTest = operand1 = operand2 = 0;  
    }  
  }  

  /*****  



CHAPTER 11 ■ THE C PREPROCESSOR AND BITWISE OPERATIONS

273

     This function applies the operands and bitwise operator and displays   
  the results  

    parameter list:  
      int which      which bitwise operation to use  
      int op1        first operand  
      int op2        second operand  

    Return value:  
      void  
  *****/  
  void ShowTest(int which, int op1, int op2)  
  {  
    byte result;  

    switch (which)  
    {  
      case AND:  
        result = op1 & op2;  
        break;  
      case OR:  
        result = op1 | op2;  
        break;  
      case XOR:  
        result = op1 ^ op2;  
        break;  
      case NOT:  
        result = ~op1;  
       break;  
      default:  
        break;  
    }  
    DisplayBinaryDigit((byte) op1);  
    delay(1000);  
    DisplayBinaryDigit((byte) op2);  
    delay(1000);  
    DisplayBinaryDigit(result);  

  }  
  /*****  
    This function takes the string entered by the user via the  
    Serial monitor and parses it into its relevant parts  

    parameter list:  
      int *which      pointer to which bitwise operation to use  
      int *op1        pointer to first operand  
      int *op2        pointer to second operand  



CHAPTER 11 ■ THE C PREPROCESSOR AND BITWISE OPERATIONS

274

    Return value:  
      void  
  *****/  
  int GetBitwiseTestParameters(int *which, int *op1, int *op2)  
  {  
    char buff[10];  
    char *ptr;  
    int charsRead;  
    int temp;  

    if (Serial.available() > 0) {  
      charsRead = Serial.readBytesUntil('\n', buff, 9);  
    }  
    if (charsRead > 9) {  
      return 0;          // Too many characters  
    }  
    buff[charsRead] = NULL;  // Make into a string  
    ptr = strtok(buff, COMMA);  
    *which = atoi(buff);  
    ptr = strtok(NULL, COMMA);  
    *op1 = atoi(ptr);  
    ptr = strtok(NULL, COMMA);  
    *op2 = atoi(ptr);  
  }  

  /*****  
    This function displays a byte value as a binary number  
    on the LEDs.  

    parameter list:  
      int num      the value to display  

    Return value:  
      void  
  *****/  
  void DisplayBinaryDigit(byte num)  
  {  
    for (int i = 0; i < ARRAYLENGTH(ledPin); i++)  
    {  
      if (bitRead(num, i) == 1) {  
          digitalWrite(ledPin[i], HIGH);  
      } else {  
          digitalWrite(ledPin[i], LOW);  
      }  
    }  
  }  



CHAPTER 11 ■ THE C PREPROCESSOR AND BITWISE OPERATIONS

275

 You can likely follow everything in the code, but in the  GetBitwiseTestParameters()  function, 
the use of the standard library function  strtok()  is a little weird. The function is a string 
“tokenizer” and is used to parse out substrings from a bigger string. For example, if the 
user wants to perform a bitwise AND test on the values 25 and 7, that test data should be 
entered in the  Serial  monitor as 1,25,7. Clearly, you need a way to extract, or parse, the 
numeric values 1, 25, and 7 from the input string. In this example, we are assuming that a 
comma separates each relevant numeric value. 

 In the  GetBitwiseTestParameters()  function consider the statement: 

  ptr = strtok(buff, COMMA);  

 This statement, when “filled in” with the input data, looks like this: 

  ptr = strtok("1,25,7", ",");  

 So, what we are saying is: “Ok,  strtok() , start with the contents of the  buff[]  character array 
and see if you can find a comma in the string.” Obviously, it finds a comma at  buff[1] , but 
here’s the tricky part:  strtok() overwrites  the comma with a NULL and returns a pointer to 
 buff[0] . So, after the first call to  strtok()  completes, it’s as though the code looks like this: 

  &buff[0] = strtok("1NULL25,7", ",");  

 This means we have created a substring with the content “1”. The call to  atoi()  converts 
this substring using  ptr  to a numeric value and assigns 1 into the variable named  which . 

 Recall that the first call to  strtok()  returns a pointer, which we assigned into  ptr.  However, 
look at the second call to  strtok() : 

  ptr = strtok(NULL, COMMA);  

 The NULL for the first argument is actually a signal to the function to use its internal pointer 
on this call rather than an external pointer. (Do you think this internal pointer is defined with 
the  static  storage class? Why or why not?) That is, the internal pointer is actually a pointer 
to  buff[2] . So, in fact, the second call works as though the call is 

  ptr = strtok(&buff[2], COMMA);  

 which, after the function completes its work, looks as though it was written as: 

  ptr = strtok(25NULL7", ",");  

 We can now use the same technique to change the string “25” to a numeric value via the call 
to  atoi(ptr)  and assign the numeric value 25 to  op1 . You should be able to figure out what the 
final call to  strtok()  does. 

 After the code in  GetBitwiseTestParameters()  does its job, control is sent to  ShowTest()  to 
display the results on the LEDs. 



CHAPTER 11 ■ THE C PREPROCESSOR AND BITWISE OPERATIONS

276

 The  strtok()  function is very powerful and actually easy to use once you understand what it 
does. Also, the second argument can have multiple separators. For example, 

  ptr = strtok("This,is#a test of? the function.", ",#?.");  

 and  strtok()  would parse out substrings: “This”, “is”, “a test of”, “ the function”. Why would 
you ever want to try and write the equivalent of  strtok()  yourself? Indeed, as you gain more 
experience, your knowledge of what library functions already exist will make you more 
and more productive over time. So, whenever you think you need to write a new function, 
google the task you need to accomplish just to make sure that someone hasn’t already 
made it available to you in a library.          



277© Jack Purdum 2015 
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming 
for the Arduino, DOI 10.1007/978-1-4842-0940-0_12

    CHAPTER 12   

 Arduino Libraries           

 In Chapter   11    , Table   11-1     presented a number of standard C header files that are available for use in your 
programs. Most of these header files are used in conjunction with their associated Standard C library and 
the functions they hold. A C  library  is nothing more than a group of (often related) functions that have been 
precompiled into what is called a  library file . Conceptually, you can think of a library file as being organized 
like a book. At the front of the file is an index of each function name that appears in the library, followed by 
a byte offset that tells where the code for that function can be found in the file, along with the byte-length of 
the function. With this information, the compiler is able to extract the code for any given function from that 
library and insert it into your program. 

 What we want to do in this chapter is point out the library routines that are routinely shipped with the 
Arduino C compiler. We also want to provide some detail on how those library functions actually get placed 
into your program. In this chapter, you will learn

•    The purpose of a linker  

•   What a library is  

•   The libraries that are standard with the Arduino C compiler  

•   How to create your own library    

 Let’s dig right in and expand your knowledge about C libraries. 

     The Linker 
 The process of extracting the function you need from a library is performed by the  linker , which is built 
into the Arduino IDE. Although I’ve simplified what actually happens a bit, the linker’s responsibility 
is to “tie things together” after the compiler does its thing. (For additional details, see    
http://openhardwareplatform.blogspot.com/2011/03/inside-arduino-build-process.html     .) 

 When the compiler sees a function that you have used, but whose source code is not in any of the 
source code files (e.g.,  digitalRead() ), it adds the name of that function to a list of “unresolved externals”. 
The compiler also marks the point in the program where that missing function’s code should be added. 
Eventually, the compiler finishes its task, all intermediate files are generated, and finally the linker is 
invoked. 

http://dx.doi.org/10.1007/978-1-4842-0940-0_11
http://dx.doi.org/10.1007/978-1-4842-0940-0_11#Tab1
http://openhardwareplatform.blogspot.com/2011/03/inside-arduino-build-process.html
http://openhardwareplatform.blogspot.com/2011/03/inside-arduino-build-process.html


CHAPTER 12 ■ ARDUINO LIBRARIES

278

 The linker finds the compiler’s list of unresolved externals and starts looking through the library 
files for the missing functions. Visually, you might think of your program as a book. The list of unresolved 
externals are like book pages that are missing from the book, and each unresolved external in that list has 
the page number where those missing pages should be inserted into the book. It’s the job of the linker to 
find those missing pages and insert them into your program at the proper place. So, how does the linker 
know which libraries to search? 

 Well, if there are no unresolved externals, the linker has nothing to do so the final code is generated for 
your program. In reality, however, there are almost always unresolved externals in a program. So, the linker 
first searches the default Arduino libraries (e.g., it finds  digitalRead() ). If there are still unresolved externals 
in the list, the linker then searches those libraries associated with the header files you’ve included in your 
code (e.g.,  #include <Wire.h> ). When the linker is finished, all of the missing functions should be resolved 
and the linker has supplied all of the missing code to your program. If the linker tells you there are still 
“unresolved externals” or something “was not declared in this scope”, it probably means you have forgotten 
to  #include  the header file for the library function you have used. 

 One of the beautiful things about C is that you are not bound to a set of built-in functions for doing 
things like math, I/O, or other commonly performed tasks. If you don’t like the way something is done 
by a function in a library, you are free to write your own function to replace it. If you do write your own 
version of a library function, the compiler finds the code for the function in your source file and does not 
add it to the list of unresolved externals that is passed to the linker. That way, your version is used in the 
program and the linker never sees the function in the unresolved externals list. In other words, your code 
supersedes the library code.  

     Libraries 
 It is useful to divide the libraries that you have available to you into two groups:

•    libraries that form the Arduino libraries and are distributed as part of the 
Arduino IDE  

•   all other libraries    

 Let’s start with the Arduino libraries. 

     Arduino Libraries 
 To obtain information about the Arduino libraries, click the Help menu option in the Arduino IDE, and then 
select the Reference option. In a moment you will see a page similar to that shown in Figure  12-1 . If you look 
closely at the figure, you will see the cursor sitting on the Libraries link near the top of the page. Right-click 
the Libraries link, and then select Open Hyperlink from the menu that pops up.  



CHAPTER 12 ■ ARDUINO LIBRARIES

279

 After clicking the Libraries link, you will see a page similar to that shown in Figure  12-2 . The libraries 
that are visible in Figure12-2 are some of the libraries that are provided and supported by the Arduino 
IDE. You will often hear these libraries referred to as the  Arduino core libraries . In addition, there are a 
number of libraries that have been contributed to the Arduino support team and have been judged useful 
enough to be included in the libraries distributed with the Arduino IDE. These libraries are normally 
referred to as  Arduino contributed libraries.  What follows is a brief description of each of these two library 
groupings.   

  Figure 12-1.    The Arduino reference page       

 



CHAPTER 12 ■ ARDUINO LIBRARIES

280

  Figure 12-2.    Arduino libraries       

     The Arduino Core Libraries 
 Table  12-1  presents a list of the Arduino core libraries. These are libraries that are supported directly by the 
Arduino C support group. It serves no real purpose to rewrite the documentation for each of these libraries. 
You should, however, check the Arduino web site from time to time because the list of Core Libraries grows. 
Also, there are some libraries that are earmarked for specific Arduino boards (e.g., the Due) that are not 
normally distributed with the core, but are supported by Arduino.  

 



CHAPTER 12 ■ ARDUINO LIBRARIES

281

 You can read up on these libraries yourself using the Arduino documentation as the need arises. 
However, that being said, there are some things that can pose some stumbling blocks along the way. For 
example, there are a number of Arduino-compatible shields (peripheral boards that plug into the Arduino 
 m c boards) that use these core library routines. For example, I have used the SD shield and was lucky that 
it worked on the first try. Another programmer friend of mine used the same identical shield, but with a 
different SD card, and he couldn’t even format the card. When I gave him my SD card, his code worked 
perfectly. The long and the short is that some SD cards simply don’t work in some SD shields. The question 
then becomes: How do you find out which cards work and which don’t? Indeed, how can you avoid 
common stumbling blocks that may arise when using these contributed libraries? 

   Using the Forums 
 The first stopping point you should visit at the outset of any project that is new to you is    http://arduino.cc/
forum/     . This forum covers a multitude of Arduino topics, as can be seen by the partial listing in Figure  12-3 . 
In these forums, you will find discussions on everything from using the Arduino to suggestions for improving 
the Arduino itself. These forums can be a real time-saver, and you should consult it anytime you begin a new 
project or if you are having trouble getting your code to work correctly. Many times I have found hints, tips, 
and suggestions that potentially saved me hours of research and trial-and-error time. Also, you will discover 
discussions on hardware interfacing issues (like the SD card problem I mentioned), which include ways to 
resolve them. The Forum should always be visited before you buy any interface device or shield. I’m positive 
the visit will save you time and money.   

   Table 12-1.    Arduino Core Libraries   

 Library name  Description 

 EEPROM  Functions to read and write to EEPROM memory 

 Ethernet  Functions for using Arduino-compatible Ethernet 
Shields 

 Firmata  Functions for communicating with external devices 
using a standard serial protocol 

 LiquidCrystal  Functions used in conjunction with LCD displays 

 SD  Functions for reading and writing data to Secure 
Digital cards 

 Servo  Functions to control servo motors 

 SPI  Functions for communicating with  Serial  Peripheral 
Interface bus devices 

 SoftwareSerial  Functions for serial communications using any 
digital pins 

 Stepper  Functions for controlling stepper motors 

 Wire  Two-wire interface (TWI/I2C) for sensor I/O 
communication 

http://arduino.cc/forum/
http://arduino.cc/forum/


CHAPTER 12 ■ ARDUINO LIBRARIES

282

   Using a Core Library 
 Anytime you need to use one of the core libraries, simply use the Sketch ➤ Import Library menu option, as 
shown in Figure  12-4 . (As you add more contributed libraries, the menu list grows to reflect those additions.) 
If you import a library, this menu selection alerts the compiler to look in the included library for any 
missing functions used in the program code. If there is a header file associated with the library, an  #include  
preprocessor directive is automatically added to your source code file for the appropriate header file. You 
already saw an example of this when you wrote the code in Listing   10-4     from Chapter   10    , which  #include ’d 
the  EEPROM.h  header file. (If you add a new library, you must restart the IDE to establish the necessary links 
to the new library.)  

  Figure 12-3.    Arduino Forum page       

 

http://dx.doi.org/10.1007/978-1-4842-0940-0_10#FPar5
http://dx.doi.org/10.1007/978-1-4842-0940-0_10


CHAPTER 12 ■ ARDUINO LIBRARIES

283

 If you look closely at the list of libraries that are available in Figure  12-4 , you will notice several libraries 
(e.g., Audio) that are not part of the Arduino Core library set. Where did these come from?  

   Contributed Libraries 
 If you reload the Libraries page depicted in Figure  12-2 , you will see a large number of contributed libraries. 
For example, one of the libraries is called Tone. If you right-click the Tone link and select the Open Hyperlink 
option, you are directed to the page shown in Figure  12-5 . If you look closely at Figure  12-5 , you’ll see a note 
stating: “The Arduino Tone Library is no longer maintained here. Please go here:”, after which is another link 
to the Tone library.  

  Figure 12-4.    Importing a library routine       

 



CHAPTER 12 ■ ARDUINO LIBRARIES

284

  Figure 12-5.    The Tone page       

  Figure 12-6.    The link page for the Tone library       

 Click that link and you are taken to the linked page, as seen in Figure  12-6 . If you click the Downloads 
tab, you can download the new Tone library.  

 (Note that there are several other libraries listed on the Downloads page, including one for MP3 
players. At the time of this writing, the third library in the list is the Tone library.) The Tone file is a ZIP file, 
which Windows can extract for you. Just double-click the ZIP file after you’ve downloaded it, and Windows 
Explorer will extract the files. 

 The extraction process produces a Tone folder that holds the set of files that are listed in Table  12-2 .  

 

 



CHAPTER 12 ■ ARDUINO LIBRARIES

285

 The entire Tone directory should be copied into the  Libraries  directory of the Arduino IDE. Now close 
the Arduino IDE and then reopen it. Now when you select the Sketch ➤ Import Library menu option, you 
should see the new Tone library in the list of library options. If you click the Tone library, your source 
code file automatically has  Tone.h  added to it. (There is a new, built-in way to import libraries, too. See 
   http://arduino-info.wikispaces.com/Arduino-Libraries#NewLib     .)  

   Using a Contributed Library 
 Almost any contributed library contains a set of files similar to that shown in Table  12-2 . The  examples  
directory usually contains one or more sample sketches of how the library can be used; it is a great way to 
learn about any new libraries you wish to add to your IDE. Indeed, it is a good idea to try the sample sketches 
to make sure that your hardware functions properly with the contributed library. I purchased some shields/
sensors that did not work with a related library. However, most of the vendors do know which libraries work 
with their sensors and shields. If you are buying over the Internet and are not sure of the compatibility of 
their sensor with a given library, e-mail them and ask. Reputable vendors will either say it is compatible, 
or they will direct you to a site that provides the proper library. If the vendor doesn’t follow one of these 
options, find another vendor. 

 When you first install a library, take the time to read the header file(s) provided with the library. Often 
there are little nuggets of information buried in the header file. I remember an OLED library that must 
have had several dozen constructor calls buried within the header file, with a default that the programmer 
assumed would be the most popular. Of course, my OLED didn’t use the default and my OLED did not have 
any identifying markings on it. After considerable trial-and-error, I found one constructor that worked. If I 
hadn’t dug through the header file, I might have just assumed that the OLED was incompatible and moved 
on. The lesson is: It pays to read the header file(s). 

 Between the examples provided with the library and the forum mentioned earlier, you should have little 
trouble utilizing a library in your own code.   

     Other Libraries 
 Actually, there are “invisible” libraries that hold many useful routines that don’t appear in the Arduino 
Library reference. (Many of these library functions are used in conjunction with the  Arduino.h  header file. 
This header file is automatically read into your program for any program you write, even though it doesn’t 
appear in the source code file.) To ferret out these invisible libraries, you need to look into the header files 
that were presented in Table   10-1    . Most of these header files are tied to the System V Standard C library 
files. Listing  12-1  is a partial listing of the code from the  string.h  header file. Almost everything you see in 
Listing  12-1  is a function declaration for library functions that you can use in your program. 

    Table 12-2.    Extracted Directories and Files from the Tone ZIP File   

 Item  Description 

  examples   A directory that contains sample code on how to use the library 

  changelog.txt   A history of changes made to the library code 

  keywords.txt   A text file that tells the IDE how to handle keywords that are used with the library 

  Tone.cpp   The source code used to write the library 

  Tone.h   The header file for the library 

http://arduino-info.wikispaces.com/Arduino-Libraries#NewLib
http://dx.doi.org/10.1007/978-1-4842-0940-0_10#Tab1


CHAPTER 12 ■ ARDUINO LIBRARIES

286

    Listing 12-1. The string.h Header File (Partial Listing) 

  extern void *memccpy(void *, const void *, int, size_t);  
  extern void *memchr(const void *, int, size_t) __ATTR_PURE__;  
  extern int memcmp(const void *, const void *, size_t) __ATTR_PURE__;  
  extern void *memcpy(void *, const void *, size_t);  
  extern void *memmem(const void *, size_t, const void *, size_t) __ATTR_PURE__;  
  extern void *memmove(void *, const void *, size_t);  
  extern void *memrchr(const void *, int, size_t) __ATTR_PURE__;  
  extern void *memset(void *, int, size_t);  
  extern char *strcat(char *, const char *);  
  extern char *strchr(const char *, int) __ATTR_PURE__;  
  extern char *strchrnul(const char *, int) __ATTR_PURE__;  
  extern int strcmp(const char *, const char *) __ATTR_PURE__;  
  extern char *strcpy(char *, const char *);  
  extern int strcasecmp(const char *, const char *) __ATTR_PURE__;  
  extern char *strcasestr(const char *, const char *) __ATTR_PURE__;  
  extern size_t strcspn(const char *__s, const char *__reject) __ATTR_PURE__;  
  extern char *strdup(const char *s1);  
  extern size_t strlcat(char *, const char *, size_t);  
  extern size_t strlcpy(char *, const char *, size_t);  
  extern size_t strlen(const char *) __ATTR_PURE__;  
  extern char *strlwr(char *);  
  extern char *strncat(char *, const char *, size_t);  
  extern int strncmp(const char *, const char *, size_t) __ATTR_PURE__;  
  extern char *strncpy(char *, const char *, size_t);  
  extern int strncasecmp(const char *, const char *, size_t) __ATTR_PURE__;  
  extern size_t strnlen(const char *, size_t) __ATTR_PURE__;  
  extern char *strpbrk(const char *__s, const char *__accept) __ATTR_PURE__;  
  extern char *strrchr(const char *, int) __ATTR_PURE__;  
  extern char *strrev(char *);  
  extern char *strsep(char **, const char *);  
  extern size_t strspn(const char *__s, const char *__accept) __ATTR_PURE__;  
  extern char *strstr(const char *, const char *) __ATTR_PURE__;  
  extern char *strtok(char *, const char *);  
  extern char *strtok_r(char *, const char *, char **);  
  extern char *strupr(char *);   

 For example, consider the following entry: 

  extern void *memcpy(void *, const void *, size_t);  

 I typed “memcpy” into Google and found a reference to the Linux manual for the library documentation 
(   www.kernel.org/doc/man-pages/online/pages/man3/memcpy.3.html     ), which is always a good C Standard 
Library source. The description for the  memcpy()  function reads:  The memcpy() function copies n bytes from 
memory area src to memory area dest. The memory areas must not overlap. Use memmove(3) if the memory 
areas do overlap.  

 Using the function declaration in conjunction with the Linux description, you should be able to figure 
out what  memcpy()  does. When describing functions, the System V Standard library wording uses  src  for 
the source object of a copy and  dest  as the destination object of the copy. The second parameter in the 

http://www.kernel.org/doc/man-pages/online/pages/man3/memcpy.3.html


CHAPTER 12 ■ ARDUINO LIBRARIES

287

declaration uses the  const void *  attribute list, which says it must be the source of what is being copied. The 
reason it must be the source is because of the keyword  const , which means the function cannot change 
whatever is being pointed to. It wouldn’t make sense for the destination array parameter to be a  const  if 
the purpose was to copy something into it. The  const  keyword would prevent the copy from taking place. 
Therefore, the first parameter ( void * ) must be the destination of the copy. 

 The term  void *  is a common C idiom used to denote a “typeless” data type pointer in a function 
declaration. In other words,  memcpy()  does no type checking during the copy process . . . it assumes that you 
know what you are doing and that the pointers all point to valid data! Not paying attention to such details 
can produce a very bloody foot. 

 The  size_t  keyword is defined in the cplusplus.com reference as:  size_t corresponds to the integral data 
type returned by the language operator sizeof and is defined in the <cstring> header file (among others) as an 
unsigned integral type.  

 This third parameter in the function declaration, therefore, is  n  in the  memcpy()  description, which tells 
how many bytes are to be copied. Voila! You now know about a very efficient standard library routine that 
does fast memory copies. As a general rule, most System V string functions that use a source and destination 
arguments place the destination argument first and the source argument second. Although there may be 
some deviations, under pressure this string convention is a good assumption to make. 

 You should spend a little time studying all the header files presented in Table   10-1    , plus any others you 
may find interesting in the  include  directory. There are a lot of good information nuggets contained in those 
header files.   

     Writing Your Own Library 
 The day will come when you have developed a group of functions that you would like to group together as 
a library. As you know, placing functions in a library is a convenient way to capture the functionality of a 
routine without having the source code directly available in your program. In this section, you will learn how 
easy it is to create your own libraries. 

 Normally, a library contains more than one function, but there is nothing to prevent you from creating a 
library with just one function. For purposes of example, let’s take the code from Listing   6-1     (repeated as part 
of Listing  12-3 ) that calculates whether a given year is a leap year or not; we’ll convert this into a library so 
that we can use it in other programs. While most standard library routines return the Boolean value  true  or 
 false  as the return value for a leap year function, for reasons I mentioned in Chapter   6    , my leap year returns 
either 1 or 0. If you don’t like this, you are free to change it. 

 Listing  12-3  also contains code to calculate the day that Easter falls on for a given year. (The specific 
day and month for Easter depends upon the lunar calendar, so the date varies from year to year.) There 
are a number of “magic numbers” in the  GetEaster()  function that are dictated by the way lunar dates are 
manipulated. I’ve slept since I understood what these magic numbers are, so I’ve left them in “as is.” The 
curious readers can research this themselves. 

 Before we discuss Listing  12-3 , however, it makes more sense to discuss the header file used in the 
listing. 

 ■   Note    Because the Arduino IDE is set up to recognize  .ino  files, it is often easier to write the header 
and source code files using a simple text editor like Notepad. (You might want to try Notepad++, 
   http://notepad-plus-plus.org /    . Give it a try and you’ll throw rocks at Notepad.) You can then move the 
necessary files to a folder in the Libraries directory after you have tested the files with a sample program.  

http://dx.doi.org/10.1007/978-1-4842-0940-0_10#Tab1
http://dx.doi.org/10.1007/978-1-4842-0940-0_6#FPar3
http://dx.doi.org/10.1007/978-1-4842-0940-0_6
http://notepad-plus-plus.org/


CHAPTER 12 ■ ARDUINO LIBRARIES

288

     The Library Header File 
 Perhaps the best place to start is with the header file associated with the library. Listing  12-2  presents the 
necessary format for creating the header file. The very first thing you need to do is decide on a name for your 
library. Obviously, you don’t want to cause a conflict with existing libraries, so review those libraries that are in 
the  Libraries  directory and make up a different name for your library. We will use  Dates  for our library name. 

 The format that you must use for the header file is more or less etched in stone. Because of this 
format inflexibility, you should model any libraries you create closely to what is described here. First, most 
libraries start with a comment that tells the name and purpose of the library. That is followed by a  #ifndef  
preprocessor directive. This is a bit of defensive coding that prevents someone from “double including” the 
header file information. Note that the matching  #endif  is at the very bottom of Listing  12-2 . Whatever you 
use for the # ifndef  name, you don’t want it to collide with any other likely  #ifndef ’s. Usually, it’s safe to use the 
library name followed by an “ _h ”, as in: 

  #ifndef Dates_h  

 Now things get a little strange because the rest of the file uses C++ language syntax, not just C syntax. As 
you know, the Arduino compiler is capable of compiling C++ code, and this is the nature of this latest version of 
the Arduino IDE. There is no way to do justice to the C++ language here. Personally, I’m a huge fan of object-
oriented programming (OOP), but that’s another story. Although we can’t delve into OOP here (we highlight 
some OOP principles in Chapter   14    ), you already know enough to get things to work in your new library. 

 The first thing you need to do is tell the compiler that you are going to compile some information into 
something called a class. A  class  is nothing more than a blueprint for something (i.e., an object) you are 
going to use in your program. Whatever properties or functions (aka,  methods  in OOP parlance) you place 
in the class are accessed by the programmer using the dot operator in much the same way you did with a 
structure. (Indeed, you’ve been doing this since Chapter   2     when you used the  println()  method of the  Serial  
class.) In fact, a class is much like a structure, only a class is also allowed to have methods (i.e., functions) 
defined within it. The general syntax form is: 

  class YourLibraryName {  
    public:  
    // Things you want the outside world to know about  
    private:  
    // Things you want to use internally but not make available to others  
  };  

 In our library, we don’t have any  private  elements of the class, so you can leave the  private  keyword out 
of the header file. (Or you can leave it in to document there are no  private  elements in our class.) The  public  
elements of the class are those data items you do want the outside world (i.e., other programmers) to be able 
to use. The first thing I’ve placed in the  public  section of the class shown in Listing 12.2 is a  #define  for the 
ASCII character 0. As you know, when you touch the 0 (zero) key on your keyboard, an ASCII code is sent to 
the operating system. In this case, the code is the numeric value 48. We are using  ASCIIZERO  as a symbolic 
constant to get rid of the magic number 48. 

 Next, we define a structure with the tag  easter , which holds the members that are used by the  Dates  
library. Most of the members are  int  data types, but the last member,  easterStr[] , is designed to hold a string 
presentation of a date in the MM/DD/YYYY format. One variable named  myEaster  is defined as a type  easter  
structure. The structure variable is the only property (i.e.,  public  data item) of this class. In the OOP world, 
a  property  is a variable that is defined within the class. To reinforce the idea of encapsulation, most class 
properties use the  private  storage class. 

http://dx.doi.org/10.1007/978-1-4842-0940-0_14
http://dx.doi.org/10.1007/978-1-4842-0940-0_2


CHAPTER 12 ■ ARDUINO LIBRARIES

289

 Near the bottom of the class are two function prototypes for the functions (usually called  methods  
in C++) that you want to make available to users of your library. These prototypes allow the compiler to 
perform type checking on the functions when they are used in a program. Because this completes our library 
(and hence, the class definition), there is a closing brace and semicolon for the class declaration and the 
closing # endif  for the  #ifndef  preprocessor directive you placed at the top of the header file. 

 That’s all that’s necessary for the  Dates.h  header file. Note that there is no “executable” code in a 
header file. 

    Listing 12-2. The Dates.h Header File 

  /*  
    Dates.h - Library for finding is a year is a leap year  
              and the date for Easter for a given year.  
    Created and modified by: Dr. Jack Purdum, Dec. 25, 2014  
    Released into the public domain.  
  */  
  #ifndef Dates_h          // If we haven't read this file before...  
    #define Dates_h        // ...read it now. This prevents double-including  

    #include "Arduino.h"   // Not needed for our code, but often included  

    class Dates  
    {  
      public:  
        #define ASCIIZERO 48     // character for 0 in ASCII  
      struct easter {  
        int month;  
        int day;  
        int year;  
        int leap;  
        char easterStr[11];  
      };  
      struct easter myEaster;  
                                // Function prototypes:  
      int IsLeapYear(int year);  
      void GetEaster(Dates *myEaster);  
    };  
  #endif     // Don't forget this!   

 The  GetEaster()  function is passed a pointer to an  easter  structure. It is assumed that the  year  member 
of the structure has been filled in prior to the call to  GetEaster() . A pointer to the structure is passed so the 
function can fill in the month and day for Easter. The function also fills in  easterStr[] , which is a MM/DD/
YYYY representation of the date for Easter. Because  easterStr[]  is  null  terminated, it may be used as a string 
upon return from the function.  

     The Library Code File (Dates.cpp) 
 The  Dates.cpp  is a C++ file (hence the . cpp  secondary file name) that contains the necessary code to make 
your library functional (see Listing  12-3 ). The first line of the source file contains a preprocessor directive 
to  #include  the  Arduino.h  header file. (In earlier versions of the compiler, this was called  Wprogram.h .) 
This header file grants access to the standard data types and constants used by the Arduino C compiler. 



CHAPTER 12 ■ ARDUINO LIBRARIES

290

As mentioned before, this header file is automatically added to all of your programs, but is not added 
automatically for library source files; you must add it yourself. Immediately after is an  #include f or the 
header file you just defined,  Dates.h . (This actually makes the include of  Arduino.h  in the header file 
unnecessary, but it is usually added by convention.) After the include files, the actual code for the library 
functions is written. 

 The source code for  IsLeapYear()  begins with a comment of the same form that you have used when you 
wrote previous functions. The line 

  int Dates::IsLeapYear(int year)  

 looks a little strange because of the  scope resolution operator  ( :: ) used in C++. Simply stated, this operator 
makes sure that any name conflicts that might arise with other functions finds that the  IsLeapYear()  method 
is associated with the  Dates  library. Any C++ book or online tutorial can give you more details about the 
scope resolution operator if you are interested. The actual code for  IsLeapYear()  has already been discussed 
in Chapter   6    . 

      Listing 12-3. The Dates.cpp Source Code 

  #include "Arduino.h"  
  #include "Dates.h"  

  /*****  
    Purpose: Determine if a given year is a leap year. Algorithm  
             taken from C Programmer's Toolkit, Jack Purdum, Que  
             Corp., 1993, p.258.  

    Parameters:  
      int year            The year to test  

    Return value:  
      int                 1 if the year is a leap year, 0 otherwise  
  *****/  
  int Dates::IsLeapYear(int year)  
  {  
    if (year % 4 == 0 && year % 100 != 0 || year % 400 == 0) {  
      return 1;   // It is a leap year  
    } else {  
      return 0;   // not a leap year  
    }  
  }  
  /*****  

    Purpose: Determine the date for Easter for a given year.  
             Algorithm taken from Beginning Object Oriented  
             Programming with C#, Jack Purdum, Wrox, 2012.  

    Parameters:  
      struct easter *myData    Pointer to an easter structure  

    Return value:  
      void  

http://dx.doi.org/10.1007/978-1-4842-0940-0_6


CHAPTER 12 ■ ARDUINO LIBRARIES

291

    CAUTION: This function assumes that the year member of the structure holds the  
             year being tested upon entry.  
  *****/  
  void Dates::GetEaster(Dates *myData){ // This is line 44  
    int offset;  
    int leap;  
    int day;  
    int temp1, temp2, total;  

    myData->myEaster.easterStr[0] = '0';    // Always a '0'  
    myData->myEaster.easterStr[2] = '/';    // Always a '/'  
    myData->myEaster.easterStr[3] = '0';    // Assume day is less than 10  
    myData->myEaster.easterStr[10] = '\0';  // null char for End of string  

    offset = myData->myEaster.year % 19;  
    leap = myData->myEaster.year % 4;  
    day = myData->myEaster.year % 7;  
    temp1 = (19 * offset + 24) % 30;  
    temp2 = (2 * leap + 4 * day + 6 * temp1 + 5) % 7;  
    total = (22 + temp1 + temp2);  
    if (total > 31) {  
      myData->myEaster.easterStr[1] = '4';    // Must be in April  
      myData->myEaster.month = 4;             // Save the month  
      day = total - 31;  
    } else {  
      myData->myEaster.easterStr[1] = '3';    // Must be in March  
      myData->myEaster.month = 3;             // Save the month  
      day = total;  
    }  

    myData->myEaster.day = day;              // Save the day  
    if (day < 10) {                 // One day char or two?  
      myData->myEaster.easterStr[4] = (char) (day + ASCIIZERO);  
    } else {  
      itoa(day, myData->myEaster.easterStr + 3, 10);  // Convert day to ASCII and...  
    }  
    myData->myEaster.easterStr[5] = '/';     // Always a '/' and overwrites null from 
itoa()  
    itoa(myData->myEaster.year, myData->myEaster.easterStr + 6, 10);    // Convert year to 
ASCII...  
  }   

 The remainder of the source code deals with determining the day of Easter for a given year. Note that 
the user of this library function is expected to pass in a pointer to a  Dates  object. The code then fills in the 
members of the structure contained in the  Dates  class with the appropriate values. If a pointer was not used, 
there would be no way to return all of the required values to the caller. By using a pointer, you can fill in the 
 day ,  month , and a string representation of the Easter date ( easterStr[] ) in the function.   



CHAPTER 12 ■ ARDUINO LIBRARIES

292

     Setting the Arduino IDE to Use Your Library 
 So far, you have two source code files for your library:

•    the  Dates.h  header file  

•   the  Dates.cpp  library source code file    

 You can move these two files into a folder you created and named  Dates  in the  libraries  directory of the 
Arduino IDE. Figure  12-7  shows how this directory might look on your system. Notice how we have a  Dates  
folder near the top of the directory. If you opened that directory, you would find the  Dates.h  and  Dates.cpp  files.  

  Figure 12-7.    The Libraries directory of the Arduino IDE       

 With those files in place in the  Libraries  directory, close the Arduino IDE and then reopen it. This action 
will register the new  Dates  files with the IDE.  

     A Sample Program Using the Dates Library 
 Listing  12-4  presents the code to exercise your new library. The program begins with a  #include <Dates.
h>  directive. You can type this line in yourself, or you can also use the Sketch ➤ Import Library ➤ Dates 
menu selection, which would automatically add the  #include <Dates.h>  to your source code file for you. The 
program then defines a  Dates  object named  myDates  for you to use in the program. The  setup()  call simply 
establishes a serial link so that you can see the output produced by the program. 

 



CHAPTER 12 ■ ARDUINO LIBRARIES

293

     Listing 12-4. A Program to Test the Dates Library Routine 

  #include <Dates.h>  
  Dates myDates;  

  void setup() {  
    int i;  
    Serial.begin(9600);  

    for (i = 2000; i < 2016; i++) {  
      Serial.print(i);  
      Serial.print(" is ");  
      if (myDates.IsLeapYear(i) == 0)  
        Serial.print("not ");  
      Serial.print("a leap year and Easter is on ");  
      myDates.myEaster.year = i;  
      myDates.GetEaster(&myDates);  
      Serial.print(myDates.myEaster.easterStr);  
      Serial.print("  ");  
      Serial.print(myDates.myEaster.month);  
      Serial.print("  ");  
      Serial.print(myDates.myEaster.day);  
      Serial.print(" ");  
      Serial.println(myDates.myEaster.year);  
    }  
  }  
  void loop() {}   

 The code inside the  setup()  function uses a  for  loop to print out the leap year and Easter data for the 
years 2000 through 2016. Note how the library routines are called using the dot operator. That is, 

  myDates.IsLeapYear(i)  

 says: Load your backpack with variable  i . Go to the  myDates  object, insert your key (the dot operator), enter 
into the class black box, and call the  IsLeapYear()  method. Once inside the class method, the code unpacks 
your backpack, extracts the data, and shoves it into the  year  property. The call to  GetEaster()  works much the 
same, only we pass the lvalue of  myDates . This allows us to use indirection via the pointer to permanently 
change the state of the members of the  myDates  object. You can tell that these values are permanently 
changed by the way they are referenced in the  Serial.print()  calls. A sample run of the program can be seen 
in Figure  12-8 .  



CHAPTER 12 ■ ARDUINO LIBRARIES

294

     Adding the Easter Program As Part of the Library 
 If you look in any of the other libraries in the  Libraries  directory shown in Figure  12-7 , you will see a folder 
named  examples . The purpose of this directory is to provide the programmer with one or more examples 
of how to use the library. You should create a subdirectory named  examples  below the  Dates  library folder 
and move the program found in Listing  12-4  into that directory. (As always, the  *.ino  file must appear in the 
directory of the same name.) Your  Dates  directory should now look like Figure  12-9  and the program from 
Listing  12-4  should be located in the  examples  directory.  

 Whoa! Where did the  keywords.txt  file come from? That’s the subject of the next section.  

  Figure 12-8.    Sample run of the Easter dates program       

  Figure 12-9.    The Dates directory       

 

 



CHAPTER 12 ■ ARDUINO LIBRARIES

295

     The keywords.txt File 
 The Arduino IDE lets you add keywords for syntax highlighting if you wish to do so. For the  Dates  library, the 
 keywords.txt  file contains the following lines: 

  Dates           KEYWORD1  
  IsLeapYear      KEYWORD2  
  GetEaster       KEYWORD2  

 Note that the format used in the  keywords.txt  file is pretty fussy. That is, in the first line,  Dates  is 
immediately followed by a Tab space, and then  KEYWORD1 . This change causes the class name  Dates  to 
appear in the color reserved for  KEYWORD1  keywords in your source code files. Using the entries shown 
here, the word  Dates , for example, takes on the same color as  for ,  which ,  else , and so forth, when it appears in 
the source code window of the Arduino IDE. 

 The next two lines cause the functions defined in the  Dates  library to have coloring as defined by 
 KEYWORD2 . As before, a Tab space must separate the function name from the  KEYWORD2  constant. When 
you view your source code, the words  IsLeapYear  and  GetEaster  take on the same color at any other class 
methods you may use. The two function names, for example, will now have the same color as  print  in 
 Serial.print() . 

 For the  keywords.txt  file to take effect, you need to close and reopen the Arduino IDE.  

     Keyword Coloring (theme.txt) 
 Some of the colors that the Arduino IDE uses in its editor are difficult for me to see. I don’t know if the reason 
is some degree of color blindness or simply eyes that are getting worn out from too much use. Whatever the 
reason, I started digging around to see if I could change the default color scheme. 

 If you look in the  lib\theme  directory just below where the Arduino EXE file is located (the exact location 
depends upon where you installed your compiler), you will find a file named  theme.txt . This file holds the 
definitions for the colors used in the text editor of the IDE. If you are going to play around with the colors, it’s 
a good idea to save a backup copy of the original file. I used  Notepad++.exe  to make the changes. If you have 
the IDE open, you should close it before making the changes suggested next. 

 First, I loaded up  theme.txt  and then did a Save As menu option using the name  themeBackup.txt . That 
way, if I screw something up, I can always go to this file and rename it back to  theme.txt —and I’m back where 
I started. 

 Next, I used Notepad++’s Edit ➤ Find menu option (or Ctrl+F) and typed in  Keyword1 . The result 
of that search is shown in Figure  12-10 . (If you use a different editor, like Wordpad, it may look different 
than Figure  12-10 . This is because of the way the end of lines are treated in different editors. If you use 
Wordpad, make sure you save the file as a normal text file and not a .doc (or some other) file type.) If you 
look closely at Figure  12-10 , after the equal sign, you will likely find the entry  #cc6600,plain . I changed it 
to  #0000FF  because it’s easier for me to see. Experiment with different color combinations until you’re 
happy. Keep in mind, however, that this color change applies to all files you use in the IDE, not just your 
library.  



CHAPTER 12 ■ ARDUINO LIBRARIES

296

 The  cc6600  value is actually the hexadecimal number for the red-green-blue (RGB) value used by the 
editor for  keyword1  words in the source code file. Because my RGB value has no red or green component, 
 keyword1  words now show up in blue. (Prior to my change, the color value was #CC6600, which one of my 
students called “baby-poo orange”!) Notice that the actual entry for  keyword1  looks like: 

  editor.keyword1.style = #0000FF,plain  

 If you change the word “plain” to “bold”, the keywords are displayed in bold font. (The answer 
to Exercise question 5 at the end of this chapter has a URL for a page that has a nice color chart and 
corresponding hex values.) 

 I also found the “e.g.” examples in the themes file misleading. For example,  keyword1  uses “e.g. abstract, 
final, private” as the example of text coloring. A more common example would include the keyword  void , 
which you will see as the function type specifier for the  setup()  and  loop()  functions. Keyword2 is used for 
coloring common data types (e.g.,  char ,  int , etc.) and method names for class objects (e.g.,  begin  in 
 Serial.begin() ). Keyword2 is used to color function (e.g.,  setup, loop)  and class ( Serial ) names. I find the code 
easier to read when I vary these keywords. You may not, so experiment and see what you think. 

  Figure 12-10.    Using Notepad’s Find option to locate Keyword1       

 



CHAPTER 12 ■ ARDUINO LIBRARIES

297

 While I was playing around with the themes file, I also changed  keyword2  (which now equals FF0000) 
and  keyword3  (which now equals 009900) using the same Notepad++ search method. When I was finished, 
I did a Save As and used the file name  theme.txt . I then reloaded the IDE and, voila! All of the color changes I 
made become the default colors for the editor. If you don’t like the changes, you can always go back and try 
some new colors. If worst comes to worst, you can rename the  themebackup.txt  file to  theme.txt  and you’re 
back to the default IDE colors.   

     Summary 
 The goal of this chapter was to make you feel more comfortable using the nondefault libraries that 
are shipped with the Arduino IDE. You should understand what the standard, core, and contributed 
libraries are from an operational standpoint. You should also understand the part that header files play 
in conjunction with library files. Indeed, you should spend some time looking through all of the header 
files available to you. The  string.h  file is just one example of the treasures you will find in the header files. 
Also, you should be comfortable creating your own libraries and adding them to the Arduino IDE. Finally, 
you learned how to use the  keywords.txt  and  theme.txt  files to alter the way the editor visually presents 
keywords in your source code. 

 EXERCISES

     1.     If you were trying to explain the concept of libraries to someone who was just 
learning about programming, how would you explain it in one sentence? 

 Answer: A library is a collection of pre-written functions (methods), usually grouped under a 
common theme, that you can use in your own programs.  

    2.    What is a core library? 

 Answer: Core libraries are those libraries that the compiler routinely uses when compiling 
programs. For example, the  Arduino.h  header file is automatically included in your source 
code for all programs that you write. This header file enables the compiler to draw from 
various libraries. There are a number of contributed libraries that are also automatically 
installed.  

    3.    What is a contributed library? 

 Answer: These are libraries that have been supplied by users of the Arduino system. 
Because Arduino is an open source project, users are encouraged to share whatever code 
they develop. Contributed libraries are one result of this code sharing.  

    4.    What does  strncpy()  do? 

 Answer: I’m not going to tell you. It comes from the  string.h  header file, so it is a routine 
stored away in a library and hence you can use it in your programs. The easiest way to 
answer this question is to google the function. You should get used to doing this whenever 
you see a function that you don’t know about.  

    5.     Suppose you wish to change some of the colors stored in the  theme.txt  file, but 
you don’t know what the RGB hex values are? How can you decipher the color 
codes? 



CHAPTER 12 ■ ARDUINO LIBRARIES

298

 Answer: Once again, go to the web and start looking. That’s what I did and I found 
   www.2createawebsite.com/build/hex-color-chart-grid.html     , which makes it easy 
to pick a color you like. There are quite a few colors to choose from . . . 256 3 , or over 16.7 
million! Google is your friend.  

    6.     Where should you place a library that you’ve written and you want to make 
permanently available to the IDE? 

 Answer: You should place your library in the  Libraries  directory and it should have a 
directory structure as follows: 

                  Libraries  
                          YourLibraryName  
                                  examples  
                                  YourLibraryName.h  
                                  YourLibraryName.cpp  
                                  keywords.txt  

  examples  contain the source code for at least one example of how to use your library.          

http://www.2createawebsite.com/build/hex-color-chart-grid.html


299© Jack Purdum 2015 
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming 
for the Arduino, DOI 10.1007/978-1-4842-0940-0_13

    CHAPTER 13   

 Interfacing to the Outside World           

 One of the first things most Arduino programmers want to do is “see” something that was produced by their 
program. Sure, the  Serial  monitor is okay for a while, but eventually you will want to display program output 
on something other than the  Serial  monitor. After all, dragging your PC around with you everywhere kind of 
limits what you can do with your Arduino. 

 One of the most popular displays is either a 2×16 or a 4×20 LCD display. These are widely available 
and fairly inexpensive, usually running around $5. The Arduino web site has a great discussion about using 
these displays (   http://playground.arduino.cc/Code/LCD     ), and because they can display both alpha and 
numeric data, it’s pretty easy to find a lot of source code available that use these displays. In fact, googling 
“Arduino LCD display source code” turns up more than 390,000 hits! 

 So, rather than kick a dead horse again, I thought I’d discuss an 8-digit 7-segment LED display instead. 
Figure  13-1  shows a typical example that uses the MAX7219 chip working through the  Serial Peripheral 
Interface  (SPI) protocol to your Arduino. The program for this LED display could also use the newer 
MAX7221 chip, but those are more expensive, so I concentrated on the MAX7219 chip to control the display. 
With a little Internet shopping, you should be able to buy this display for less than $3.  

  Figure 13-1.    An 8-digit, 7-segment LED display using the MAX7219       

 

http://playground.arduino.cc/Code/LCD


CHAPTER 13 ■ INTERFACING TO THE OUTSIDE WORLD

300

     The Serial Peripheral Interface (SPI) 
 The SPI protocol is used to communicate with one or more peripheral devices. In most applications, the 
Arduino serves as the master device that holds dominion over the peripheral devices. The communication is 
accomplished using four lines that are shared among the devices. These four lines are as follows:

•     MISO : This is the Master In, Slave Out line for sending data from a slave to the master  

•    MOSI : This is the Master Out, Slave In line for sending data to the peripherals  

•    SCK : This is the  Serial  Clock line that synchronizes the data transmission by the master  

•    SS : A pin on a device that the master uses to select the device    

 Because of the SPI popularity, most Arduino boards bring these control lines out to a single header 
called the  In Circuit Serial Programming  (ICSP) header (see Figure  13-2 ). You’ll notice that the SS line is 
missing from the ICSP header. (The SS pin is most often used when a slave device is controlled by an external 
master.) However, you can use just about any digital pin to control the select line. (If possible, still avoid pins 
0 to 3 because of the USB communications and interrupts that often use these pins.)  

 If you want more information about the SPI protocol or the ICSP, two good sources are at 
   http://arduino.cc/en/Reference/SPI      and    http://en.wikipedia.org/wiki/Serial_Peripheral_      
 Interface_Bus#Mode_Numbers .  

  Figure 13-2.    The ICSP header pins       

     An SPI Program 
 Let’s write a program that simulates a counter timer. The display shows the approximate time that has 
elapsed from when the program was started to the present. The reason that we say “approximate” is because 
we are using  delay()  to track the time. I’ve already mentioned that  delay()  is a nice easy function to use, but 
it’s not very accurate, plus it uses interrupts that could “block” certain applications where you need an ISR. 
The IDE sample program, Blink Without Delay, is a better example of how to code something where you 
need to work with interrupts. Rather, the program presented here is used to show how you can display up to 
eight numeric digits easily and at a fairly low cost. 

 The program starts with a zero count, which for this program means that all displays are initialized to 
zero. Starting on the left edge of the display, the code uses the first two digits to represent hours. Clearly, 
the max number of hours is 99. The remaining pairs of digits are for minutes, seconds, and hundredths of a 
second. The hundredths-of-a-second display digits are an illusion; they are there simply to make the output 
from the display a little more interesting. If you look at the function named  BumpFrame()  in Listing  13-1 , 
you’ll see a call to  delay()  of: 

  delay(10);  

 Because the last two digits represent hundredths of a second, and 1000 milliseconds is one second, we 
simply divide 1000 by 100 to get a delay of 10 milliseconds between display updates. Clearly, that’s not going 

 

http://arduino.cc/en/Reference/SPI
http://en.wikipedia.org/wiki/Serial_Peripheral_


CHAPTER 13 ■ INTERFACING TO THE OUTSIDE WORLD

301

to be accurate because it takes time to execute the program instructions. You could improve the accuracy by 
counting the program instructions and the time it takes to execute each instruction, but that’s an H-bomb-
to-kill-an-ant for our purposes. All I want to do is show you how to interface to an inexpensive LED display. 

   Listing 13-1. Countdown LED Display 

  /*  
    Program is a quick-count stopwatch. The code starts with zero and  
    counts up from there. No protection rollover. Base code by Blair Thompson.  

    Modified by Dr. Purdum, 12/26/2014  
  */  
  #include <LedControl.h>    // From Arduino LedControl library  

  int DIN    = 10;  
  int LOADCS = 11;  
  int CLK    = 13;  

  int ledBrightness = 5;    // range is 0-15.  0=lowest, 15 = full power  

  // DIN, CLK, Load/CS, 8 digits  
  LedControl myLEDs = LedControl(DIN, CLK, LOADCS, 8);  
  int hundredths0, hundredths1;  
  int seconds0, seconds1;  
  int minutes0, minutes1;  
  int hours0, hours1;  

  void setup()  
  {  
    pinMode(DIN, OUTPUT);  
    pinMode(CLK, OUTPUT);  
    pinMode(LOADCS, OUTPUT);  

    myLEDs.shutdown(0, false);               // Wake 'em up  

    Reset();  
    myLEDs.setIntensity(0, ledBrightness  ); //set the brightness  
  }  

  void loop()  
  {  
    BumpFrame();  // Bump the necessary display digits  
  }  

  /*****  
    This function increments the hundredths of a second counter and  
    rolls to the next digit as needed.  

    Parameter List:  
      void  



CHAPTER 13 ■ INTERFACING TO THE OUTSIDE WORLD

302

    Return value:  
      void  
  *****/  
  void  BumpFrame()  
  {  
    delay(10);    // Count to 99 from 0 every second  

    myLEDs.setDigit(0, 0, hundredths0++, false);  // Update last digit  
    if (hundredths0 == 10) {  
      hundredths1++;  
      hundredths0 = 0;  
    }  
    if (hundredths1 < 9) {                        // Time to roll over?  
      myLEDs.setDigit(0, 1, hundredths1, false);  // Nope  
    } else {  
      hundredths1 = 0;  
      myLEDs.setDigit(0, 1, hundredths1, false);  // Yep  
      BumpSeconds();  
    }  
  }  

  /*****  
    This function increments the seconds counter and  
    rolls to the next digit as needed.  

    Parameter List:  
      void  

    Return value:  
      void  
  *****/  
  void  BumpSeconds()  
  {  
    seconds0++;          // Bump the seconds count  
    if (seconds0 == 10) {  
      seconds1++;  
      seconds0 = 0;  
    }  
    myLEDs.setDigit(0, 2, seconds0, true);     // update units  

    if (seconds1 < 6) {  
      myLEDs.setDigit(0, 3, seconds1, false);  // Update tens  
    } else {  
      seconds1 = 0;  
      seconds0 = 0;  
      myLEDs.setDigit(0, 3, seconds1, false);  // Reset and update minutes  
      BumpMinutes();  
    }  
  }  



CHAPTER 13 ■ INTERFACING TO THE OUTSIDE WORLD

303

  /*****  
    This function increments the minutes counter and  
    rolls to the next digit as needed.  

    Parameter List:  
      void  

    Return value:  
      void  
  *****/  
  void  BumpMinutes()  
  {  
    minutes0++;            // Works the same as seconds, only for minutes:  
    if (minutes0 == 10) {  
      minutes1++;  
      minutes0 = 0;  
    }  
    myLEDs.setDigit(0, 4, minutes0, true);  

    if (minutes1 < 6) {  
      myLEDs.setDigit(0, 5, minutes1, false);  
    } else {  
      minutes1 = 0;  
      minutes0 = 0;  
      myLEDs.setDigit(0, 5, minutes1, false);  // Need to update hours  
      BumpHours();  
    }  
  }  

  /*****  
    This function increments the hours counter and  
    rolls to the next digit as needed.  

    Parameter List:  
      void  

    Return value:  
      void  
  *****/  
  void  BumpHours()  
  {  
    hours0++;            // Works same as minutes…  
    if (hours0 == 10) {  
      hours1++;  
      hours0 = 0;  
    }  
    myLEDs.setDigit(0, 6, hours0, true);  

    if (hours1 < 6) {  
      myLEDs.setDigit(0, 7, hours1, false); // Nothing left to bump, so reset  
    } else {  



CHAPTER 13 ■ INTERFACING TO THE OUTSIDE WORLD

304

      hours1 = 0;  
      hours0 = 0;  
      Reset();  
    }  
  }  

  /*****  
    This function resets the digits to zero  

    Parameter List:  
      void  

    Return value:  
      void  
  *****/  
  void Reset()  
  {  
    myLEDs.setDigit(0, 0, 0, false);  
    for (int i = 1; i < myLEDs.getDeviceCount(); i++) {  
      myLEDs.setDigit(0, i, 0, (i % 2 == 0) ? true : false);  
    }  
  }   

 You can read about the LedControl library and download it at    https://github.com/wayoda/
LedControl     . One of the nice features of the library is that it allows you to configure the control pins the way 
you want to define them. 

 You probably don’t need me to make too many comments on the code, as there’s not a whole lot 
going on. A global LED control object named  myLEDs  is defined and initialized to work with our eight-digit 
display. Next, we define a bunch of  int  variables that essentially give names to each of the eight seven-
segment displays. The  setup()  function does little more than set the control pins to  OUTPUT , set the LEDs 
to active mode, set the display brightness, and clear the display. The  loop()  function only has one statement: 
 BumpFrame().  

  BumpFrame()  is responsible for incrementing the hundredths-of-a-second digits of the display. If 
the units component ( hundredths0 ) is equal to 10, the tens component ( hundredths1 ) is incremented and 
 hundredths0  is set to 0. This process continues on until the count is 99, at which time the two digits are set 
to 0 and  BumpSeconds()  is called. In other words, the hundredths of a second “rollover” to the seconds 
segments of the display. 

 If you look at the code for  BumpSeconds() , it works pretty much the same as the way the hundredths-
of-a-second digits were incremented, only using a rollover value of 60 (seconds) instead of 100. Indeed, 
 BumpMinutes()  and  BumpHours()  are the same, only using different units of the display. The algorithm is 
essentially the same. Once the display shows 99:59:59:99, the code calls the  Reset()  function and the count 
starts over. 

 The real point of this program is to show how easy it is to use the SPI interface to control an inexpensive 
eight-digit display. Also, you can turn off the display for whatever time period you need and only display 
the number on a given criteria. Because LEDs are relatively power hungry, being able to turn the display 
off easily can be useful. These displays are a good choice if you only need to display fairly large numbers. In 
most cases, these displays cost less and are more easily viewed than a 16×2 LCD display.  

https://github.com/wayoda/LedControl
https://github.com/wayoda/LedControl


CHAPTER 13 ■ INTERFACING TO THE OUTSIDE WORLD

305

     Interrupts and Interrupt Service Routines (ISR) 
 Anyone who has been around a two-year-old child for more than a couple of hours knows what an interrupt 
is. If you’ve raised your own kids, you also know what an Interrupt Service Routine (ISR) is— ranging 
from diaper changes to chasing away those monsters that live under the bed. Simply stated,  interrupts are 
notifications that something wants immediate attention. The nature of that attention is contained in the code 
that comprises the ISR . 

 Interrupts offer an alternative to the polling process mentioned in Chapter   5     when we talked about loop 
structures. Recall that I discussed how you might use a loop to monitor fire sensors in a building. The code 
visited each sensor, and if no fire was sensed, the loop moved to the next sensor. This process of moving from 
one area of interest (i.e., a sensor) to the next is called  polling . The problem is that if you have thousands of 
sensors in the poll list, and it takes a few seconds for each sensor to get an accurate reading, it could take 
over a half an hour to make a complete pass through the sensor list. If you’re unlucky enough to have a fire 
start immediately after a visit to that sensor, the fire is going to get a half-hour start before anyone knows 
something’s amiss. Not good. Because of such limitations, critical applications like a fire system would not 
use a polling algorithm for the fire system. Instead, the system would be based on sensors that can generate 
an interrupt. 

 The Arduino family supports two types of interrupts: external (hardware) and pin change. External 
hardware interrupts are triggered by some type of signal on a pin. Hardware interrupts can be triggered in 
four different ways:

•    on a low signal state  

•   on a change in signal state  

•   on the rising edge of a signal change  

•   on the falling edge of a signal change    

 Because these interrupts are hardware based, they are very fast. Although external interrupts are 
fairly easy to work with, the bad news is that the Arduino boards have a limited number of pins designed to 
respond to external hardware interrupts. The good news is that all of the Arduino pins can be used with pin 
change interrupts. You simply designate the pin(s) you wish to use and attach them to an ISR. Table  13-1  
shows the external interrupt pins for several popular Arduino boards.  

   Table 13-1.    Arduino External Interrupt Pins   

 Board  Int0  Int1  Int2  Int3  Int4  Int5 

 Uno, Mini, Nano  2  3 

 Mega 2560  2  3  21  20  19  18 

 Leonardo, Micro  3  2   0   1 

 If you look at the LCD examples that are distributed with the Arduino IDE, you’ll find that they use 
pins 2 and 3 as part of the data communication between the display and the Arduino. The use of those pins 
is not etched in stone, so we prefer to move them so pins 2 and 3 are left for hardware interrupts should a 
sketch need them. If your design does not require all of the digital pins to be used, we’d suggest leaving pins 
0–3 open. As you know, pins 0 and 1 are used by the  Serial  object to communicate with your PC via the USB 
cable. Now you know that pins 2 and 3 are available for external hardware interrupts. While these pins can 
be used in your program for digital use, as a rule we leave them empty just in case we want to use an external 
interrupt down the road. Figure  13-3  shows how the pins are mapped for the Atmel 328 chip.  

http://dx.doi.org/10.1007/978-1-4842-0940-0_5


CHAPTER 13 ■ INTERFACING TO THE OUTSIDE WORLD

306

 Note how INT0 and INT1 are actually tied to pins 4 and 5 on the chip. However, most boards arrange 
the pinouts so they appear to be digital pins 2 and 3. Pin 1 on the chip is actually the Reset pin, whereas pins 
2 and 3 are the RXD/TXD used by the  Serial  object for communication over the USB link. 

 There are three ports defined for the Atmel 328 (or 168) chip. These ports allow for faster, low-level 
manipulation of the I/O pins associated with each port. The three ports are defined in Table  13-2 . Note that 
PORTB, PORTC, and PORTD are symbolic constants that you can use in your programs. Also note that only 
PORTB forms an 8-bit port.  

   Table 13-2.    Port Pin Assignments   

 Port Name  Pins  Comment 

 PORTB  14-19 and 9,10  Labeled PB* in Figure  13-2 . 

 PORTC  23-28, 1  Labeled PC* in Figure  13-2 . Avoid pin 1, the Reset pin. 
(These are also the analog pins, ADC0 – ADC5.) 

 PORTD  2-6, 9-13  Labeled PD* in Figure  13-2 . Avoid interrupt pins 2 and 3, 
and  Serial  pins 0 and 1. 

  Figure 13-3.    The Atmel 328 chip       

 PORTB is labeled PB0 through PB7 in Figure  13-2 , and corresponds to pins 14–19, but then skips to pins 
9 and 10 for the last to bits of the port. PORTC is labeled PC0 through PC6 in Figure  13-2 , but PC6 is rarely 
used because it is the CPU Reset bit. PORTD is labeled PD0 through PD7, but you will usually avoid pins PD0 
and PD1 since these are used by the  Serial  object. PD2 and PD3 correspond to the interrupt pins, INT0 and 
INT1, respectively. 

 Each port is controlled by three registers: the Data Direction Register, the PORT Data Register, and 
the port PIN registers. Therefore, DDRD would be the Data Direction Register for Port D, PORTD (as seen 
earlier) is the Data Register for port D, and PIND is the PIN register for port D. All of the PIN registers are 
read-only. 

 



CHAPTER 13 ■ INTERFACING TO THE OUTSIDE WORLD

307

     Interrupt Details 
 To appreciate how interrupts work, we need to learn some low-level details about the Arduino boards that 
are based on the Atmel 328 CPU. (We’ll concentrate on the 328 chip, as that’s the most popular.) First, we 
need to understand the External Interrupt Control Register A, EICRA. This can be seen in Table  13-3 .  

   Table 13-3.    The External Interrupt Control Register A   

 Bit  7  6  5  4  3  2  1  0 

 EICRA  ISC11  ISC10  ISC01  ISC00 

 Read/Write  R  R  R  R  R/W  R/W  R/W  R/W 

    Table 13-4.    Interpretation of Bit Patterns   

 Description  ISC11  ISC10  ISC01  ISC00 

 The low level  0  0  0  0 

 Any logical change  0  1  0  1 

 Falling edge  1  0  1  0 

 Rising edge  1  1  1  1 

   Table 13-5.    The External Interrupt Mask Register   

 Bit  7  6  5  4  3  2  1  0 

 EIMSK  -  -  -  -  -  -  INT1  INT0 

  Read/Write    R    R    R    R    R    R    R/W    R/W  

 The two interrupts available on the 328 chip are INT0 and INT1. The EICRA controls what triggers these 
two interrupts, as described in Table  13-4 . In this table, ISC00-01 describes the parameters for INT0, whereas 
ISC10-11 is for INT1.  

 Therefore, if the EICRA register of a 328 processor holds binary 00000010; INT0 will be using the falling 
edge of the signal to trigger the interrupt. A bit pattern of 00001110 says INT0 is using a falling edge trigger, 
but INT1 is using a rising edge trigger. Make sure you understand why these bit patterns determine how 
INT0 and INT1 work before you move on. 

 The determination of which interrupt is being used is set using the External interrupt Mask Register 
(EIMSK). This is presented in Table  13-5 . If the 0 bit is set (i.e., 1), INT0 is active. If the 1 bit is set, INT1 is 
active. Obviously, you can also have both interrupts active at one time by setting both bits.   

  Table 13-6.    The External Interrupt Flag Register   

 Bit  7  6  5  4  3  2  1  0 

 EIFR  -  -  -  -  -  -  INTF1  INTF0 

  Read/Write    R    R    R    R    R    R    R/W    R/W  



CHAPTER 13 ■ INTERFACING TO THE OUTSIDE WORLD

308

 When an edge or logic change occurs on either the INT1 or INT0 pin and triggers an interrupt 
request, the appropriate bit in the External Interrupt Flag Register (EIFR) is set (see Table  13-6 ). If either 
of the corresponding interrupt pins is set in the EIMSK register, control branches to the ISR. The ISR code 
determines what the interrupt actual does. The EIFR is cleared when the ISR code is executed.  

     An External Interrupt Program 
 Now let’s take a simple example where we wire a switch to pin 2. The ground leg of the switch has a 10K 
resistor between the switch and the ground pin on the Arduino. Anytime we press the switch, we want 
program control to immediately jump to our ISR. Listing  13-2  shows the source code for our interrupt 
program. 

    Listing 13-2. A Simple Interrupt Program 

  #include <avr/interrupt.h>  

  #define LEDPIN  13  

  volatile int state = LOW;  

  void setup() {  

    DDRB = DDRB | B00100000;  // Set pin 6 of Port B to output, but…  
                              // PORTB6 is digital pin 13  
    PORTD |= (1 << PORTD2);   // turn On pin 2 of PORTD  

    EICRA |= (1 << ISC00);    // set INT0 to trigger on ANY logic change  
    EIMSK |= (1 << INT0);     // Turns on INT0  

    sei();                    // turn on interrupts  
  }  

  void loop() {  
    unsigned long i;  
    unsigned long sum = 0;  
    for (i = 0; i < 4000000; i++)  // Do this just to have  
      sum++;                       // something to interrupt!  
  }  
  ISR(INT0_vect)  
  {  
    state = !state;               // Flip its state  
    digitalWrite(LEDPIN, state);  // interrupt code here  
  }   

 The first thing we do is  #include  the header file that contains the symbolic constants for using interrupts. 
Next we define  state  as a  volatile int  variable. The  volatile  keyword is actually a message to the compiler to 
generate code that forces the  state  variable to be reloaded from memory every time it is accessed, even if it is 
currently sitting in a register. That way we can ensure that the code doesn’t use an “out-of-date” (i.e., cached) 
value for  state . It’s a good idea to use the  volatile  keyword with any variable that is part of the ISR. 



CHAPTER 13 ■ INTERFACING TO THE OUTSIDE WORLD

309

 The next statement 

  DDRB = DDRB | B00100000;  // Set pin 6 of Port B to output, but...  
                            // PORTB6 is digital pin 13  

 is used to set bit 6 of PORTB high by using the Data Direction Register for Port B (DDRB). If you count the 
digital pins in Figure  13-2 , starting with PD0, and count to PB5, you’ll find out that bit 6 of PORTB is the 
13 th  digital I/O pin. Sound familiar? Yep... it’s the LED pin. In other words, the preceding statement is the 
low-level equivalent of: 

  pinMode(13, OUTPUT);  

 Indeed, you could replace the low-level statement with the  pinMode()  call, and it will work exactly the 
same. 

 The next statement 

  PORTD |= (1 << PORTD2);   // turn On pin 2 of PORTD  

 is used to turn on pin 2 of Port D. Now refer back to Figure  13-2  and look for PD2 (i.e., pin 2 of Port D). Well, 
whaddaya know... PD2 is also the pin for INT0! So the statement is simply activating the INT0 interrupt. 

 The first of the next two statements 

  EICRA |= (1 << ISC00);    // set INT0 to trigger on ANY logic change  
  EIMSK |= (1 << INT0);     // Enables INT0  

 can be understood by looking at Table  13-4 . Because we are setting bit ISC00 to 1, we are setting the External 
Interrupt Control Register A (EICRA) to use any logic state change on INT0 to trigger the interrupt. The  |=  
operator performs a bitwise OR on the current state of EICRA, which has the effect of maintaining the bit 
pattern that prevailed before this statement is executed. That way, the statement only affects the ISC00 bit in 
the register. The call to  sei()  “sets external interrupts,” which enables the interrupts. 

 If you look at the call to  ISR(INT0_vect) , it is the ISR we wrote for INT0. Note how the parameter to the 
ISR (i.e.,  INTO_vect ) determines which interrupt is being defined. As you can see, the ISR does little more 
than toggle the state of the onboard LED. It does this by doing a logical NOT on the current value of  state . 
Recall that we defined  state  using the  volatile  storage specifier to force the compiler to reload  state  each time 
it is referenced. This ensures that  state  remains “in sync” with what we are trying to do. 

 Three more little bits of advice about ISR…. First, use the  volatile  storage specifier with any variables 
used in the routine, for the reason we just mentioned. Second, keep the ISR as short as possible. The reason 
is because while your ISR is running, everything else is on hold until your ISR finishes. Third, while your ISR 
is running, no other interrupts can take place. This often means that any libraries you might use that have 
their own ISRs (e.g.,  Serial  methods) are comatose while your ISR is active. This is another reason to keep 
yours as short as possible. You’d hate to have your light sensor ISR turning on a couple-hundred hallway 
lights in the morning while the fire ISR is trying to tell you that the tenth floor is on fire. 

 The code in  loop()  is just there so something is going on when you press the button. If you just put in an 
empty  loop() , most of the time the compiler optimizes it away. Oh, one more thing. If you run this program, 
it sometimes appears that the button press gets out of whack with what you think should be happening. This 
is probably caused by “switch bounce.” If you look at a switch closure on a fast oscilloscope, you will see that 
the voltage bounces between HIGH and LOW before it settles down to its “real” state. There are ways in both 
hardware and software to get rid of switch bounce. A quick session with Google will show you a bazillion 
ways to cope with switch debouncing.   



CHAPTER 13 ■ INTERFACING TO THE OUTSIDE WORLD

310

     An Alternative Interrupt Program 
 Let’s have the same goal as the previous program; namely, blinking the onboard LED when we press a switch 
connected to pin 2. This time, however, remove the 10K resistor and just directly wire one leg of the switch to GND 
on the Arduino and the other side to pin 2. Arduino pins to default inputs, which means they do not explicitly 
need to be defined using the INPUT symbolic constant and  pinMode() . Internally, this means each pin behaves as 
though it has a high impedance (e.g., 100 megohm) resistor wired in front of each pin. As a result, it takes very little 
current to change the pin state, which is beneficial in some situations. However, it also means that unconnected 
pins can change state in a seemingly random fashion, as such pins “float” between the HIGH and LOW states. 

 However, internal to the Arduino are 20K pullup resistors that can be activated by software. (The exact 
value of the pullups varies by chip type. Check your chip’s documentation if this is a critical factor to your 
circuit.) You can access these pullup resistors using a  pinMode()  call with the INPUT_PULLUP symbolic 
constant. Because of this configuration, with a switch connected to a pin with INPUT_PULLUP active, an 
open switch reads HIGH, and it reads LOW when the switch is pressed. 

 Listing  13-3  is the code that illustrates another way to implement an interrupt. The code is very similar 
to Listing  13-2 , except we rely on the  attachInterrupt()  function to do most of the work for us. 

   Listing 13-3. Alternative Interrupt Program 

  #include <avr/interrupt.h>  

  #define LEDPIN  13  

  volatile int state = LOW;  

  void setup() {  
    pinMode(LEDPIN, OUTPUT);  
    pinMode(2, INPUT_PULLUP);  

    attachInterrupt(0, myISR, CHANGE);  
    sei();                    // turn on interrupts  
  }  

  void loop() {  
    unsigned long i;  
    unsigned long sum = 0;  

    for (i = 0; i < 4000000; i++)  // Do this just to have  
      sum++;                       // something to interrupt!  
  }  

  void myISR()  
  {  
    state = !state;  
    digitalWrite(LEDPIN, state);/* interrupt code here */  
  }   

 The statements 

  pinMode(13, OUTPUT);  
  pinMode(2, INPUT_PULLUP);  

  attachInterrupt(0, myISR, CHANGE);  



CHAPTER 13 ■ INTERFACING TO THE OUTSIDE WORLD

311

 set the LED pin to OUTPUT and turns on the pullup resistor for pin 2. (Can you get rid of these magic 
numbers? If so, then do it!) The  attachInterrupt()  function has the interrupt number as its first argument. 
In our example, we are using interrupt 0 (INT0). The second argument is the name of the ISR that tells the 
program what to do when an interrupt occurs. In our case, we simply toggle the LED using the ISR named 
 myISR() . The third argument tells what signal condition should cause the interrupt. We have used the 
CHANGE symbolic constant to trigger the interrupt whenever the state of the switch changes. 

 When you run the program and press the switch, the LED blinks on and off. Note, however, that if 
you are using a push button switch, pushing it in turns the LED off and letting it go turns it back on. (If you 
have a real “bouncy” switch, it may strobe several times.) The reason is because we are using the CHANGE 
symbolic constant to trigger the interrupt whenever the state of the switch changes. What would happen if 
you changed this to trigger on a rising or falling edge signal? 

 The code in the  loop()  function is there to show that we can do something else while the interrupt 
is active. Again, if we just used a simple empty loop, the compiler optimizes the loop away, which is why 
we use  sum  in the loop. If you wish, you can put a  Serial.print()  statement in  loop() , but don’t forget that 
because the  Serial  object itself uses interrupts, your interrupt will have to wait until the  Serial  object finishes 
its interrupt code before you can hope for yours to activate.  

     Ultrasonic Sensor Program 
 Many of the Arduino Starter Kits detailed in Appendix A include an inexpensive ultrasonic sound sensor (see 
Figure  13-4 .) These sensors are based on the idea that a transmitted sound takes a known amount of time 
to travel a given distance. For example, at 72 degrees Fahrenheit, sound travels 1131.7439486730823 feet/
second, or 344.9555555555555 meters/second. Therefore, if the sensor emits a ping and a wall is 1131.74 feet 
away, it takes approximately 2 seconds for the sound wave to make the round-trip from the sound emitter 
to the wall, and back to the sound receiver. (These inexpensive sensors are pretty much deaf at 1100 feet. 
Ten feet is a more realistic range.)  

  Figure 13-4.    Ultrasonic sensor       

 If you look closely at Figure  13-3 , you can see that the sensor is controlled by just two pins: a trigger 
ping and an echo pin. The idea is that one device emits a sound and the other device detects that sound. 
By measuring the time interval in between sending and receiving the ping, you can measure the distance to 
an object. The distance range is approximately 1 inch to 12 feet, with an advertised accuracy of about 0.25 
inches. The cost of these sensors is about $2. 

 



CHAPTER 13 ■ INTERFACING TO THE OUTSIDE WORLD

312

 The code to use the sensor is presented in Listing  13-4 . You can probably figure out the code without my help. 
I chose to use pin 8 for the trigger pin and pin 10 for the echo pin, but you can choose whatever pins you wish. 

   Listing 13-4. Ultrasound Sensor Program 

  /*  
    Code is taken from  
         http://www.arduino.cc/en/Tutorial/Ping      
    and was written by David Mellis and modified  
    by Tom Igoe.  

    Modified by Dr. Purdum for sound speed at  
    72 degrees F.  
    1/2/2105  
  */  

  int triggerPin = 8;  
  int echoPin = 10;  

  void setup() {  
    Serial.begin(115200);  
    pinMode(triggerPin, OUTPUT);  
    pinMode(echoPin, INPUT);  
  }  

  void loop(){  
    long roundTrip;  
    float cm;  

    digitalWrite(triggerPin, LOW); // Trigger a short low pulse  
    delayMicroseconds(2);          // before the HIGH pulse  
    digitalWrite(triggerPin, HIGH);  
    delayMicroseconds(10);  
    digitalWrite(triggerPin, LOW);  

    roundTrip = pulseIn(echoPin, HIGH);  
    cm = microsecondsToCentimeters(roundTrip);  
    float inch = cm / 2.54;         // Figure out inches  
    Serial.print(cm);  
    Serial.print(" cm or ");  
    Serial.print(inch);  
    Serial.print(" inches");  
    Serial.println();  
    delay(1000);  
  }  
  /*****  
    This function calculates how far the pulse travels to  
    strike and object and return. The air temp is assumed  
    to be 72F.  

    Parameter list:  
      long microseconds    the time of the pulse  

http://www.arduino.cc/en/Tutorial/Ping


CHAPTER 13 ■ INTERFACING TO THE OUTSIDE WORLD

313

    Return value:  
      float                centimeters to and from target  
      *****/  
  float microsecondsToCentimeters(long microseconds){  
    return (microseconds*0.034495)/2;  
  }   

 Because the trigger pin ( triggerPin  = 8) sends the pulse, we use  pinMode()  to set the pin for  OUTPUT . 
Pin 10,  echoPin , uses  pinMode()  to set the pin for  INPUT  since it receives the pulse. 

 The documentation for the sensor says to send a short, low pulse immediately before sending out the 
pulse of interest. You can see this near the top of  loop() . There is a 10-microsecond pulse, after which the 
sensor is set to LOW. The statement 

  roundTrip = pulseIn(echoPin, HIGH);  

 waits for the pin to go HIGH to start its timing cycle, and stops timing when the pin goes LOW. It returns the 
length of the pulse in microseconds. The documentation says  pulseIn works with pulses from 10 microseconds 
up to almost 3 minutes. The call to  microsecondsToCentimeters()  is passed the number of microseconds it 
took to make the trip from and back to the sensor. For that reason, the actual distance to the object is half 
that time, which is why the function adjusts the conversion from time to microseconds by dividing by 2. The 
floating point constant reflects the speed of sound when the temperature is 72 degrees Fahrenheit. Figure  13-5  
shows a sample run of the program as I moved a book forward and backward in front of the sensor.  

  Figure 13-5.    Sample run of ultrasonic sensor program       

 



CHAPTER 13 ■ INTERFACING TO THE OUTSIDE WORLD

314

 Although sensors like the one shown in Figure  13-3  are often used in robotics types of equipment, that’s 
not the reason for showing you how to use it. Rather, I wanted to show you how simple it can be to use a 
sensor in a program. Many other types of sensors, from light sensors to audio detectors, are just as easily 
interfaced to an Arduino. Many of the starter kits include a variety of sensors, including the ultrasonic sensor. 
I saw an ad on eBay for a collection of 37 sensors for less than $50. Depending upon your interest, pick up a 
few sensors and experiment with them.  

     A Programming Problem 
 A time will come when you have a sketch working but you’d like to modify it to make it even better. When I 
first started working with the Arduino, I needed to display more information than would fit on a standard 
2×16 LCD display. I needed the first line of the display to tell the origin of the data presented on the second 
line. Although not my actual program problem, let’s say you need the first line of the LCD to say: “From: Jill” 
and the second line to show the message. No problem … as long as the message is 16 characters or less. But 
Jill tends to have long messages, so you need to be able to show the entire message while keeping the first 
line unchanged. How are you going to do this? 

 As you know, you can address the LCD cursor, position it where you want it on the display, and then 
print characters to it starting at that position. So, my first hack at the solution was to divide the message for 
the second line into 16-character chunks and simply scroll through the message. My first thought was to 
insert a  delay()  call after a 16-character chunk was displayed, and then display the next 16-character chunk. 
That worked fine, but looked kinda clunky; plus some people read faster or slower than other people. So, my 
next hack was to display a message chunk until the user pressed a key on the  Serial  monitor. For my specific 
application, this worked okay, but what if I faced a similar problem down the road and didn’t use a PC as 
part of the solution, or I didn’t want the user to have to press a key or switch? Then what? Okay, what’s your 
solution? No, really—stop, think for a few minutes, and design a solution that you feel overcomes whatever 
shortcomings you perceive. 

 The first thing you have to realize is that my solution may be a lesser solution than your solution. 
After all, if I had all the “perfect” answers, I’d be rich and not writing books during my retirement. (Well, I’d 
probably still be writing, as I actually enjoy it.) Either way, you should try to implement your solution before 
you read about mine. So, go build your solution and come back after you have it working. Then you’ll be able 
to compare the two. 

     My Solution 
 Before I get into my solution, I need to point out that there is one LCD display I absolutely love to use. 
It’s a 16×2 white-on-blue LCD using the Inter-Integrated Circuit (I2C) interface from Yourduino 
(   http://yourduino.com/sunshop2/index.php?l=product_detail&p=170     ). The display is reasonably 
priced ($5.75), is very fast, and uses only two pins. It took me less than 30 seconds from out-of-the-box 
to completely working. If you want an easy-to-use LCD display, it doesn’t get any easier than this one. 
I’m sure there are other I2C LCD displays available on the Internet, too. 

 Anyway, my solution was to implement horizontal scrolling of the second line. The Yourduino display 
takes advantage of an LCD library written specifically for an I2C display. You can download the library from 
   https://bitbucket.org/fmalpartida/new-liquidcrystal/downloads     . 

 (You may have to rename any library that has the same matching folder name.) The library, however, 
does not implement horizontal scrolling, so we need to write that function ourselves. To do that, let’s 
diagram how we want it to work. We’ll assume that the message we want to display on the second line 

http://yourduino.com/sunshop2/index.php?l=product_detail&p=170
https://bitbucket.org/fmalpartida/new-liquidcrystal/downloads


CHAPTER 13 ■ INTERFACING TO THE OUTSIDE WORLD

315

is 40 characters long. The second line of the LCD can be thought of as 16 boxes, each capable of holding 
one character:

      

  We’ll assume that the message is: “We will meet for lunch at noon at the Twin Lakes Restaurant.”  
 Therefore, our initial state of the display looks like this when we display the first part of the message that fits 
on the display:

      

  After a moment’s pause, we need to push all of the letters on the display one position to the left and update 
position 16 with the next character in the message. Therefore, we want the display to look like this:

      

  After another small pause, we want to push things left again so that the display shows this:

      

  We keep repeating this process until the entire second message is displayed. After the complete 
message is displayed, we can either stop or redisplay the entire message again. 

 So, how would you code this algorithm? You should fall back to the Five Program Steps. The 
Initialization Step should create the LCD object for the display, and we likely will need to define some global 
variables. It seems likely that we will need  char  arrays for the first and second message lines ( msg1, msg2 ), 
and perhaps symbolic constants for rows and columns. Because we want the message to scroll at a readable 
speed, we will likely need a delay of some stated milliseconds while the message is scrolled. That delay 
value, too, will likely be a symbolic constant since we will want to experiment with the length of the delay. 

 The Input Step collects the message to be displayed. In our test case, we are just going to hard-code 
a message string during testing. In actual use, the message could come from any device that is capable of 
delivering a character stream. It could be the  Serial  object, a database connection, a Wi-Fi connection, an SD 
card reader... whatever. The point here, however, is to develop a function capable of horizontal scrolling. 

 The Process Step involves reading the input stream and formatting the characters into the strings that 
can be passed to the Display Step. It is the Display Step that is the focal point of this exercise. As usual, there 
is no Termination Step. 

 So, how do you want to scroll the display? We know we need to “slide” the message from right to left 
behind a fixed 16-character “window.” This suggests a  for  loop to march through the message array in some 
fashion. So, let’s use that as a starting point. 



CHAPTER 13 ■ INTERFACING TO THE OUTSIDE WORLD

316

 Listing  13-5  presents our scroll program. There’s really nothing unusual about the global definitions 
or  setup() . The  Serial  object is actually not used, but I added it in case you wanted to add some debug print 
statements while testing. Note how I use  #define DEBUG  to toggle the scaffold code. 

    Listing 13-5. Scroll LCD Display 

  //#define DEBUG    // Uncomment if you want to add debug prints  

  #include <Wire.h>  // Comes with Arduino IDE  
  // Get the LCD I2C Library here:  
  //     https://bitbucket.org/fmalpartida/new-liquidcrystal/downloads      

  #include <LiquidCrystal_I2C.h>  
  #define COLS      16  
  #define ROWS       2  
  #define PAUSE    300  

  // For the Yourduino I2C LCD display:  
  // set the LCD address to 0x27 for a 20 chars 4 line display  
  // Set the pins on the I2C chip used for LCD connections:  
  //                    addr, en,rw,rs,d4,d5,d6,d7,bl,blpol  

                        // Set the LCD I2C address  
  LiquidCrystal_I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE);  
  char msg1[] = "From: Jill";  
  char msg2[] = "We will meet for lunch at noon at the Twin Lakes Restaurant";  

  void setup()  
  {  
  #ifdef DEBUG  
    Serial.begin(9600);      // For debugging, if needed…  
  #endif  
    lcd.begin(COLS, ROWS);   // init lcd for 16 chars 2 lines  

  }  

  void loop()  
  {  
    int len;  
    len = strlen(msg1);  
    if (len > COLS) {        // Truncate From details if too long  
      msg1[COLS] = '\0';  
    }  
    lcd.setCursor(0,0);      //Start at character 4 on line 0  
    lcd.print(msg1);  
    len = strlen(msg2);  
    if (len <= COLS) {       // Second part short enough to fit?  
      lcd.setCursor(1, 0);  
      lcd.print(msg2);  

https://bitbucket.org/fmalpartida/new-liquidcrystal/downloads


CHAPTER 13 ■ INTERFACING TO THE OUTSIDE WORLD

317

    } else {  
      ScrollDisplay(msg2, 1); // Need to scroll the message  
    }  
    delay(4000);  
  }  

  /*****  
    The purpose of this function is to scroll a message across  
    a line of the display.  

    Parameter list:  
      char msg[]        the message to scroll  
      int row           the row for scrolling  

    Return value:  
      void  
  *****/  
  void ScrollDisplay(char msg[], int row)  
  {  
    int i;  
    int j;  
    char window[COLS + 1];  // Enough room for message + null  

    strncpy(window, msg, COLS);  
    window[COLS + 1] = '\0';  
    lcd.setCursor(0, row);        // Show first part...  
    lcd.print(window);  
    delay(PAUSE);  

    j = COLS;  
    do {  
      for (i = 0; i < COLS - 1; i++) {  // Copy old part  
        window[i] = window[i + 1];  
      }  
      window[i] = msg[j];               // Add new characcter  
      lcd.setCursor(0, row);  
      lcd.print(window);  
      delay(PAUSE);  
    }while (msg[++j]);  

  }   

 In  loop() , we determine the length of the message string; and if the second part is too long to fit a 
single LCD display width, the  ScrollDisplay()  function is called. Within the  ScrollDisplay()  function, we 
define a  COL + 1  window (e.g.,  window[] ) in which to scroll the message. Because we know the message 
is too long to display, we copy the first  COL  characters from the message to the display window using this 
statement :  

  strncpy(window, msg, COLS);  



CHAPTER 13 ■ INTERFACING TO THE OUTSIDE WORLD

318

  strncpy()  is a standard library function that copies up to  COLS  characters from  msg[]  to  window[] . The code 
then displays the first part of the message string held in  window[]  on the LCD display. 

 ■   Tip   I encourage you to study the standard C library string functions. See    www.techonthenet.com/c_
language/standard_library_functions/string_h/     . You should study all the  str*()  and  mem*()  functions, as 
they solve a lot of common programming tasks. I would also encourage you to avoid the  String  class. While that 
class does bring a lot to the table, I find it bloats the code size rather noticeably. Use a  char  array instead.  

 The program then uses a  do-while  loop to scroll the rest of the message. Note how the  for  loop has the 
effect of moving each character one screen column to the left, giving the illusion of horizontal scrolling. When 
the loop completes, we update the last character position with a new character from the message. The code 
then sets the cursor and displays the  window[]  line. The  delay()  call is necessary to keep the display on the 
screen long enough to read. You can play around with the  delay()  argument to suit your preference. We used a 
 do-while  because we want to test for the end of a message after the current character is scrolled.   

     Conclusion 
 In this chapter I tried to show you how easy it is to interface your Arduino with the outside world. We haven’t 
even scratched the surface. A little work searching the Internet will turn up hundreds of projects that use all 
kinds of sensors. Because of the Arduino’s popularity, there are dozens of inexpensive sensors, shields, displays, 
and other add-ons available with which you can experiment. You can even use an OLED display that’s less than 
1-inch square, but is capable of 128×64 graphics! Dig around a little and you’ll be amazed what you will find. 

 EXERCISES

    1.    Why is it not a good idea to use the  Serial  object when you are using interrupts 
in your project? 

 Answer: The reason is because the  Serial  object itself uses interrupts, which means that 
other interrupts may be missed when the  Serial  object is active.  

   2.    If  pinMode()  can be used to set pins, why should you bother learning about port manipulation? 

 Answer: Direct port manipulation is a little faster and allows you to set multiple pins at the 
same time.  

   3.    Along the same lines, why use port manipulation for interrupts when you can 
use  attachInterrupt() ? 

 Answer: Same answer—it is more efficient and it can set multiple pins at once.  

   4.    Why would you choose to use the SPI or I2C interface for an LCD display instead 
of the standard interface used in the IDE examples? 

 Answer: The SPI and I2C interfaces use fewer pins, plus the interfaces can control multiple 
devices if needed. Note that using these interfaces requires the use of an LCD display that 
has the SPI or I2C hardware as part of the display.  

http://www.techonthenet.com/c_language/standard_library_functions/string_h/
http://www.techonthenet.com/c_language/standard_library_functions/string_h/


CHAPTER 13 ■ INTERFACING TO THE OUTSIDE WORLD

319

   5.    The Arduino IDE allows you to use the  String  class instead of  char  arrays for 
strings. Why did I avoid the  String  class in this chapter? 

 Answer: The  String  class makes a lot of string manipulation very easy, but at a price I’m not 
willing to pay. Write a program using the  String  class and then write the same program using 
a  char  array. In most cases, the  String  class version will consume about 30% more memory.  

   6.    I asked you to study the  str*()  and  mem*()  functions. Why did I do that? 

 Answer: Because those functions are used over and over in programs—so you need to 
learn how to use them. It will save you time (and probably memory) as you develop your 
programs. Indeed, learning about what’s available in different libraries is probably one of 
the most efficient uses of your time that you can pursue while learning C.  

   7.    Rewrite the  ScrollDisplay()  function in Listing  13-5   without  using a  for  loop. 

 Answer: I added this exercise to see if you could apply what you learned in question 6. The 
fact that you’re reading this suggests that you are interested in doing the exercises. The 
benefit of that drive is learning a little bit more than those who just skip over the exercises. 
Please try to do this on your own before you read my solution. At the very least, explain to 
yourself how I got rid of the  for  loop and how it works. 

  /*****  
    The purpose of this function is to scroll a message across  
    a line of the display.  

    Parameter list:  
      char msg[]        the message to scroll  
      int row           the row for scrolling  

    Return value:  
      void  
  *****/  
  void ScrollDisplay(char msg[], int row)  
  {  
    int i;  
    int j;  
    char window[COLS + 1];  // Enough room for message + null  

    strncpy(window, msg, COLS);  
    window[COLS + 1] = '\0';  
    lcd.setCursor(0, row);        // Show first part…  
    lcd.print(window);  
    delay(PAUSE);  



CHAPTER 13 ■ INTERFACING TO THE OUTSIDE WORLD

320

    j = COLS;  
    do {  
      memmove(window, &window[1], COLS);       // No more for loop!  
      window[COLS - 1] = msg[j];               // Add new character  
      lcd.setCursor(0, row);  
      lcd.print(window);  
      delay(PAUSE);  
    }while (msg[++j]);  

  }           



321© Jack Purdum 2015 
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming 
for the Arduino, DOI 10.1007/978-1-4842-0940-0_14

    CHAPTER 14   

 A Gentle Introduction to Object-
Oriented Programming and C++           

 The purpose of this chapter is singular: I want to teach you enough about object-oriented programming 
(OOP) and C++ so that you can look at the source code of a library header ( *.h ) file and its associated C plus-
plus ( *.cpp ) file and have some idea of what the code is doing. To say that I (or anyone else) can teach you 
C++ in one chapter is either a lie or a  REALLY  long chapter. Still, it’s worthwhile having an idea of what OOP 
is and what it brings to the programming table. This chapter builds on information contained in Chapter   12    , 
so make sure that you have already read that chapter. 

 C++ is not the only OOP language available in the world of programming. Many other languages could 
be used (e.g., Java, C#, Visual Basic, Python, Ruby, etc.), and each has its own strengths and weaknesses. 
However, given that the Arduino IDE is built upon the Open Source C++ compiler, it’s obvious that any OOP 
coding is done in C++. For that reason, the discussion in this chapter is couched in terms of C++. While there 
are some minor variations, most of what’s said in this chapter applies to many other OOP languages as well. 

     The OOP Trilogy 
 The core of OOP programming and its benefits can be explained in terms of the OOP Trilogy: encapsulation, 
inheritance, and polymorphism. Let’s take a quick look at each of these elements of OOP. 

     Encapsulation 
 You already have some idea of what  encapsulation  means: data hiding. When we discussed scope in 
Chapter   7    , I explained how limiting the visibility of a piece of data by encapsulating it in the most restrictive 
scope level possible makes it easier to test and debug a program. Encapsulation means that access to a piece 
of data is restricted. By having restricted access, any time that piece of data has a bogus value, you at least 
have a well-defined starting point from which you can ferret out what the problem is. 

 Back in the “bad ole days,” all variables had what we now call  global scope  and many languages (e.g., 
Basic) had “typeless” data. That is, any variable could hold string, floating point, or integer data. Debugging 
was a nightmare. Creating data types and then encapsulating by using the concept of scope made life 
much easier for the programmer. OOP simply carries encapsulation one step further by hiding the data in 
something called a  class . (I explain what a class is later in this chapter.)  

http://dx.doi.org/10.1007/978-1-4842-0940-0_12
http://dx.doi.org/10.1007/978-1-4842-0940-0_7


CHAPTER 14 ■ A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

322

     Inheritance 
  Inheritance  is the ability to have a “ground level” description of a piece of data, and then further refine it to 
create a new type of data. For example, some time ago I was asked by a real estate investor to write a package 
that would track their real estate holdings. The investor has three basic types of buildings: residential, 
commercial, and apartments. Each type of rental property had its own special considerations. While the 
number of bedrooms affects both residential and apartment properties, it has no impact on commercial 
properties. Likewise, commercial properties had to have so many parking places, of which some fraction 
had to be for handicap parking. Also, bathroom facilities were affected by the square footage of the building. 
There were even snow removal restrictions that varied by property type. So, how do you minimize the 
complexity of the software? 

 You can reduce the complexity by looking for common features for all property types, and then worry 
about the details. For example, each property had an address, property taxes, purchase price, insurance cost, 
mortgage lender, mortgage amount, and so forth. We could create variables for these aspects of a property 
in something called  building . We could then create some other object and track the details that make each 
building type different. Figure  14-1  shows this relationship.  

building

residential commercial apartment

“Is a”

  Figure 14-1.    Building types       

 What we are showing in Figure  14-1  is that a residential, commercial, and apartment buildings are all a 
special type of a base type called  building . In other words, these three special types of building “inherit” all 
of the basic elements shared in common for all buildings. The arrow pointing from each of the three specific 
building types is called an “is a” relationship, which says that each of those special building types inherits all 
of the traits of  building . 

 OOP jargon often refers to  building  as the  base class ; the three building types are  subclasses  of the 
base class. You will also hear the base class called the  parent class  and the subclasses called  child classes . 
The interpretation is the same for either set of terms. The important thing to note is that, instead of three 
sets of property taxes, mortgages, addresses, and types of variables, we can push that into a common 
denominator class (i.e., the base class) and simply let the subclass inherit those member’s variables from 
the base class. By using inheritance of the base class, you’ve reduced the code for tracking those variables 
by two-thirds what they would be otherwise. Imagine the code savings if you are a university tracking 
50,000 students!  

 



CHAPTER 14 ■ A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

323

     Polymorphism 
 The concept of  polymorphism  literally means one thing has many shapes. In OOP programming, it means 
that a method can have a single name, but can behave differently based upon the arguments that are passed 
to it. You have used this yourself when you used something like the following: 

  int val = 10;  
  Serial.println(val);  
  Serial.println(val, HEX);  

 In this example, the  Serial  object’s  println()  method is called twice, each using a different argument list. 
As a result, the first call prints  val  using the (default) base 10 numbering system, while the second version 
displays  val  in hexadecimal (base 16). 

 Sometimes you may read about method overloading.  Method overloading  is actually polymorphism in 
action because it allows you to “overload” a method name with multiple versions of its functionality based 
on its signature. As long as the argument list of the methods are different (e.g., different signatures), the 
compiler will be able to figure out what your intent is and generate the proper code even though the method 
names are the same.   

     The OOP Class 
 Perhaps the common denominator of all OOP languages is the concept of a class. A  class  is a formal 
description of something called an object. An  object  is simply a description of something that you are 
interested in. Let’s create a simple example to illustrate what a class is. 

 Suppose you are looking for a new job. You make an application and the company wants to have a 
face-to-face interview. Because you live about a thousand miles away, the company calls you to set up the 
interview and arranges to meet you at the airport. During the discussion, you tell them that you’re a female, 
about 5 ¢ 4" tall, blonde hair, slim, and that you will be wearing a black business suit and carrying a black 
attaché case. The company guys says he’s male, about six-feet tall, graying hair, overweight, and will be 
wearing a gray business suit. You plan to meet near baggage claim. 

 During this phone call, you are both describing what we might call a  person object . The person object 
has variables for height, sex, weight, clothing, and hair color. Does this sound familiar? Doesn’t this data 
scheme sound a little bit like a C  struct ? You could declare a Person  struct  like: 

  struct Person {  
     int height;  
     int sex;  
     int weight;  
     char wearing[20];  
     int hairColor;  
  };  

 Recall that each variable in the  struct  is called a member of the  struct . A major difference between a 
 struct  and an OOP  class  is that a  class  allows you to add functions to the  struct ; something a  struct  does not 
allow. In OOP parlance, the functions that are contained within a  class  are called class  methods . You’ve been 
using class methods from day one each time you called  Serial.print(). Serial  is the class object and  print()  is 
the class method. (I discuss the dot operator a little later.) 



CHAPTER 14 ■ A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

324

 Why was I careful to say: “You could  declare  a Person  struct ….”? If you remember, the structure 
declaration is just a template for a structure variable. It’s not until you do something like 

  struct Person candidate, interviewer;  

 that you actually  define  structure variables that we can use in our program. Now let’s move our 
understanding of  struct  to a class. 

     Inside an OOP Class 
 Let’s take a look at one of the more simple C++ libraries. Listing  14-1  presents the  EEPROM.h  header 
file. If you look at the first and last line of the file, you will see the  #ifndef-#endif  preprocessor directives, 
which we discussed in Chapter   11    . Almost all library files have a similar starting format. In essence, what 
these preprocessor directives say is: “If  EEPROM_h  is not yet defined, read the contents of this file into the 
program. If it is defined, don’t read this file.” 

     Listing 14-1. The EEPROM.h Header File 

  #ifndef EEPROM_h  
  #define EEPROM_h  

  #include <inttypes.h>  

  class EEPROMClass  
  {  
    public:  
      uint8_t read(int);  
      void write(int, uint8_t);  
  };  

  extern EEPROMClass EEPROM;  

  #endif   

 This is a bit of defensive coding to prevent us from “double including” the contents of a header file. If we 
didn’t do this, we might get a bunch of duplicate definition error messages. 

 After including the  inttypes.h  header file, the code has the following statement: 

  class EEPROMClass  
  {  

 This statement says: What follows from the opening brace to the closing brace in this file is a  declaration  
of what a  class  named  EEPROMClass  contains. The remaining lines say that there are two  public  methods 
named  read()  and  write():  

    public:  
      uint8_t read(int);  
      void write(int, uint8_t);  
  };  

  extern EEPROMClass EEPROM;  

http://dx.doi.org/10.1007/978-1-4842-0940-0_11


CHAPTER 14 ■ A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

325

 The keyword  public  means that access to the following two methods is readily available through a  class  
object. 

 Class object?  

     OOP and Class Objects 
 The  class  declaration code presented in Listing  14-1  is like a blueprint for a house. It tells you the features 
of the house and how it is to be constructed, but house blueprints are not a house. Just like you can’t live in 
a set of blueprints, the declaration of a class is not something you can directly use in a program. To define a 
 class  variable that we can use, we need to use something like the statement: 

  EEPROM myEEPROM;  

 However, because each Arduino board only has one EEPROM memory bank, near the bottom of the 
header file you see the statement 

  extern EEPROMClass EEPROM;  

 which defines an object of the  EEPROMClass  and calls it  EEPROM . The variable named  EEPROM  is an 
object of the  EEPROMClass . (Recall that the keyword  extern  means the actual variable is defined in another 
file. In this case, it means that you will define the  EEPROM  object in your sketch. Look at one of the EEPROM 
library examples and you’ll see how this works.) You now have defined a variable that you can use in your 
own program. Because of the  public  keyword in the class declaration, you can now use statements like 

  EEPROM.read();     // Access to the read() method using the EEPROM object  
  EEPROM.write();    //      “        write()          “  

 to read and write the EEPROM memory on your Arduino board. 
 One more analogy: A C++ class is like a cookie cutter. The members of the class describe the angles 

necessary to form the cookie cutter, ounces of dough, and so forth. By changing the angles, you can have 
diamond-shaped cookies, Christmas tree cookies, Halloween cookies, and so forth. The class members 
dictate the shape, whether it has sprinkles or frosting, whether it uses a  bake()  or  fry()  method, and so forth. 
Regardless of the class declaration, nothing happens until you press the cookie cutter (i.e., the class) into the 
dough (i.e., memory), and extract the actual cookie (i.e., the object of the class), and perhaps apply a method 
(i.e.,  bake() ) so that you have something useful to dunk into a glass of milk.  The process of using a class 
declaration to define a class object is called object instantiation.  

 Simply stated, a  class  is the set of blueprints for a house and an  object  of the class is the actual house 
itself. It is the class object that you use in your program.  

     public vs. private in a Class 
 The keyword  public  means that you can directly access that member or method through the class object. 
Suppose we modified Listing  14-1  as Listing  14-2 . 

   Listing 14-2. The EEPROM.h Header File 

  #ifndef EEPROM_h  
  #define EEPROM_h  

  #include <inttypes.h>  



CHAPTER 14 ■ A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

326

  class EEPROMClass  
  {  
    private:  
      uint8_t bankSize;  

    public:  
      uint8_t read(int);  
      void write(int, uint8_t);  
      void clear();  
  };  

  extern EEPROMClass EEPROM;  

  #endif   

 Notice that we added a new method named  clear().  We placed this  prototype declaration  for the method 
in the  public  section of the header file so that it is accessible via the class object. That is, we could call it using 
 EEPROM.clear() . We also added the lines 

  private:  
    uint8_t bankSize;  

 to the class declaration. The keyword  private  means only methods defined within the class have access 
to the class member named  bankSize . Perhaps the  clear()  method uses  bankSize  to clear the contents of 
EEPROM memory. 

 Wait a minute? If  banksize  is  private  to the class and hence not accessible outside of the class, how can 
it ever be changed? Ah … great question, and this highlights one of the strengths of OOP design. If you want 
to be able to change the state of a  private  member of a class, like  bankSize , you need to write a new method, 
perhaps called  SetBanksize() , to be able to change the class member named  bankSize  while the program is 
running. (You could, of course, initialize the member to some value as part of its definition, such as: 

  private:  
    uint8_t bankSize = 512;  

 However, by adding a new  public  method, you are allowing a  private  class member to be changed while 
the program is running.) 

 Big deal... what’s the advantage of that? Why not just make the member  public ? Well, the advantage is 
that you can add some form of error checking in  SetBanksize() , giving you better control over the data that 
gets “into” the class object. If you make  bankSize  a  public  member of the class, the programmer could stick 
in some stupid value (e.g., –513) they want and, perhaps, break something further down the line. By forcing 
 private  members to be changed through a  public  method that you control, you at least have a chance to catch 
bogus values before they get into your program. This approach makes testing and debugging easier, too. 

 Finally, it sometimes helps to think of class members as the attributes, or properties, of the class (e.g., 
weight, height, gender, etc.) Indeed, some programmers refer to class members as class attributes or class 
properties. As such, they are like nouns in a sentence: they describe what’s in the class. Class methods, on 
the other hand, often describe some action that is performed on the class members:  read() ,  write() ,  clear() , 
 setCursor() , and so forth. Because they are action-based, they are like the verbs in a sentence. Because the 
class members describe the object and methods provide a means of changing those members (especially 
when they are defined using the  private  storage specifier), changing the value of a member implies changing 
the  state  of the object. Think about it. 

 Now let’s look inside the  EEPROM cpp  source code file.   



CHAPTER 14 ■ A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

327

     The EEPROM.cpp File 
 Listing  14-3  shows what’s in the  EEPROM.cpp  source code file. Not much there, actually. The first few lines 
use the  #include  preprocessor directive to read in the necessary header files needed by the code. The  #ifndef  
preprocessor directive in the header file prevents us from “double including” the three include files found in 
Listing  14-3 . Note that we include the  EEPROM.h  header file we discussed earlier. 

    Listing 14-3. The EEPROM.cpp Source Code File 

  /*  
    EEPROM.cpp - EEPROM library  
    Copyright (c) 2006 David A. Mellis.  All right reserved.  

    This library is free software; you can redistribute it and/or  
    modify it under the terms of the GNU Lesser General Public  
    License as published by the Free Software Foundation; either  
    version 2.1 of the License, or (at your option) any later version.  

    This library is distributed in the hope that it will be useful,  
    but WITHOUT ANY WARRANTY; without even the implied warranty of  
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU  
    Lesser General Public License for more details.  

    You should have received a copy of the GNU Lesser General Public  
    License along with this library; if not, write to the Free Software  
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA  
  */  

  /****************************************************************************  
   * Includes  
   ****************************************************************************/  

  #include <avr/eeprom.h>  
  #include "Arduino.h"  
  #include "EEPROM.h"  

  /****************************************************************************  
   * Definitions  
   ****************************************************************************/  

  /****************************************************************************  
   * Constructors  
  *****************************************************************************/  

  /****************************************************************************  
   * User API  
   ****************************************************************************/  

  uint8_t EEPROMClass::read(int address)  
  {  
          return eeprom_read_byte((unsigned char *) address);  
  }  



CHAPTER 14 ■ A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

328

  void EEPROMClass::write(int address, uint8_t value)  
  {  
          eeprom_write_byte((unsigned char *) address, value);  
  }  

  EEPROMClass EEPROM;   

 The first line of code is 

  uint8_t EEPROMClass::read(int address)  

 which is the start of the definition of the  read()  method. The line is no different than the function signatures 
you read about in Chapter   6    . It states that the  read()  method is designed to return a  uint8_t  data type. If you 
look inside the  Arduino.h  header file, you will find that  uint8_t  is another way of saying: “ unsigned  8-bit 
integer data type”. So what does the following mean? 

  EEPROMClass::  

 The double-colon ( :: ) is called the  scope resolution operator  and its purpose is to tell you which class 
contains the current method being examined. In other words, to verbalize the statement 

  uint8_t EEPROMClass::read(int address)  

 you might say: “The  read()  method is a member of the  EEPROMClass  class, takes an integer argument 
named  address , and returns an  unsigned  8-bit integer.” If you want another word pattern for the scope 
resolution operator, you could substitute: “contains the member method named”. So a less complete reading 
of the line would be: “The  EEPROMClass  contains a member method named  read() .” In other words, the 
scope resolution operator tells you the class for which a given method is defined. After all, a  write()  method 
from the  EEPROMClass  is only one class that uses the name  write()  for one of its methods. Many other 
libraries use the same  write()  name (e.g., Serial, Wifi, Servo, SD, etc.) but the scope resolution operator 
allows the compiler to keep everything tied to the proper class. 

 Note the last statement in the  EEPROM.cpp  file: 

  EEPROMClass EEPROM;  

 This is the same as the last line in the header file, minus the keyword  extern . This makes sense when 
you remember what  extern  means. The  extern  keyword is telling the compiler that the variable named 
 EEPROM  is defined in some other file, but let me use it in this file as an  EEPROMClass  object. In the header 
file, therefore,  EEPROM  is a data  declaration  statement. If that’s the case, and it is, then some other file must 
define EEPROM  . That’s what this last statement in  EEPROM.cpp  does: it  defines EEPROM  so we can actually 
use it in our programs (i.e., it has an lvalue). 

 If you load the  eeprom_read.ino  sample program in the IDE, you will find that the first line in the  loop()  
function is: 

  value = EEPROM.read(address);  

 Because variable  EEPROM  is an object of the  EEPROMClass , you can use it to access the  read()  method 
of the class using the dot operator. The dot operator is used in much the same way as you used it with a  struct  
variable. With a class object, however, you use the dot operator to bridge the gap between the class object 
and one of the object’s members or methods. Simple! 

http://dx.doi.org/10.1007/978-1-4842-0940-0_6


CHAPTER 14 ■ A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

329

 These two files also illustrate another important fact about a properly constructed library:  a well-
designed header file does not contain executable code . That is, header files contain data declarations, not 
data definitions. Nor do header files contain definitions of class methods. Header files may contain data 
declaration for a class, but the instantiation of a class object is relegated to the associated  .cpp  or program 
( *.ino ) files.  

     Add julian() to Dates 
 Sometimes it’s useful to know the number of days between two dates. For example, it’s common to send an 
invoice that states “2-10 net 30”. The interpretation is that the billed company can deduct 2% of the invoice cost 
if they pay the balance within 10 days. Otherwise, the full amount is to be paid within 30 days. Calculations 
like this need to know the number of days between two specified dates. At the heart of such calculations is 
determining a Julian date. A Julian date specifies the number of days from January 1 to a specific date. 

 If you think about it, the only wrinkle is that you have to correct for leap years. Otherwise, it’s pretty 
simple. Listing  14-4  presents the code for the  julian()  method. 

   Listing 14-4. The julian() Method 

  /*****  
    Purpose: Determine the numbers of days between the given date  
             and Jan 1 of the same year. Algorithm taken from C  
             Programmer's Toolkit, Jack Purdum, Que Corp., 1993,  
             p.257.  

    Parameters:  
      int day         The day to test  
      int month       The month to test  
      int year        The year to test (e.g., 2015)  

    Return value:  
      int             The number of days, including the one given  
  *****/  
  int Dates::julian(int day, int month, int year)  
  {  
    static int runsum[] = {0, 31, 59, 90, 120, 151, 181,  
                           212, 243, 273, 304, 334, 365};  
    int total;  

    total = runsum[month - 1] + day;  
    if (month > 2) {  
      total += IsLeapYear(year);   // Adjust for leap year  
    }  
    return total;  
  }   

 The code is straightforward. The array  runsum[]  is a running total of the number of days from January 
1 to the start of the next month. Question: Why did I define the array using the  static  storage modifier? If you 
leave the  static  modifier out of the definition of the array, then each  Dates  object you instantiate creates its 
own copy of the array. That is, 

  Dates myBirthday, yourBirthday;  



CHAPTER 14 ■ A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

330

 instantiates two  Dates  objects. If we omit the  static  keyword, the  runsum[]  array is created for each 
object. However, since we never change the contents of the  runsum[]  array, why not share it with all 
instantiations of a  Dates  object? That’s exactly what the  static  storage specifier does: It allocates memory 
for only  one  copy of the array and all  Dates  objects share that single array definition. The good news is 
that this saves us 24 bytes of memory for each  Dates  object our program instantiates. The bad news is 
that the compiler will  always  create that one copy of the array even if you never instantiate a single  Dates  
object. Still, why would you include the  Dates  library if you didn’t intend to use it? True, you might not 
use the  julian()  method, but the array is still going to be created anyway. If that’s the case and you’re 
really hurting for free memory, you can always cannibalize the  Dates  library and just extract only those 
methods you need. 

 Note how we use  IsLeapYear()  to adjust the day count when it is a leap year. It’s calculations like this 
that make returning an  int  from the method easier to use than returning a  boolean . 

 Before you can use the  julian()  method of the  Dates  class, you need to modify the  Dates  header file so 
the compiler knows a new method has been added to the class. How do you do that? Pretty simple, actually. 
Just add the method’s signature to the header file, as the following snippet shows: 

  int IsLeapYear(int year);  
  void GetEaster(Dates *myEaster);  
  char *DayOfTheWeek(int day, int month, int year);  
  char *GetDayOfWeek();  
  int julian(int day, int month, int year);  // New method!  

 Obviously, the method prototype appears in the  public  section of the header file so we can access it 
using the class object’s dot operator. 

 No doubt you noticed that there are two methods presented in the snippet that we haven’t discussed 
yet. (You did notice, didn’t you?) I added these two new methods simply to show how to use a private 
member of a class. The next section discusses these two methods.  

     Adding a private Class Member 
 The following code snippet is extracted from the  Dates.h  header file: 

  class Dates  
  {  
    private:  
      char today[4];            // Hold string for day of week  

    public:  
      #define ASCIIZERO 48      // character for '0' in ASCII  

 The snippet shows where we placed the definition of the  today[]  character array. It is used to hold a 
string representing the day of the week (e.g., “Fri”) and we have made it  private  to the class. All of the day 
abbreviations use 3 bytes of memory, but we need the 4 th  byte for the  null  termination character. Again, 
defining  today[]  in the  private  definition section of the  Dates  class means that only members of the class can 
access it directly. So, how can we access  today[] ? Well, that’s the purpose of the  GetDayOfTheWeek()  method. 
As you will see, this example is a bit contrived and a little on the RDC side, but it still makes a point. The code 
for both methods is presented in Listing  14-5 . 



CHAPTER 14 ■ A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

331

   Listing 14-5. The Day of the Week Method 

  /*****  
    Purpose: Determine day of the week for given date. Algorithm  
             taken from C Programmer's Toolkit, Jack Purdum, Que  
             Corp., 1993, p.259.  

    Parameters:  
      int day         The day to test  
      int month       The month to test  
      int year        The year to test (e.g., 2015)  

    Return value:  
      char *  
  *****/  
  char *Dates::DayOfTheWeek(int day, int month, int year)  
  {  

    const static char days[7][4] = {"Sun", "Mon", "Tue", "Wed",  
                             "Thu", "Fri", "Sat"};  

    int index;  

    if (month > 2) {  
      month -= 2;  
    } else {  
      month += 10;  
      year--;  
    }  
    index = ((13 * month - 1) / 5) + day + (year % 100) + ((year % 100) / 4)  
            + ((year / 100) / 4) - 2 * (year / 100) + 77;  
    index = index - 7 * (index / 7);  
    strcpy(today, days[index]);  
    return today;  
  }  

  /*****  
    Purpose: Get the object's current day of the week  

    Parameters:  
      void  

    Return value:  
      char *        A 3 character string for the day  

  WARNING: This method is coupled tightly to DayOfTheWeek() and  
           assumes it was called prior to calling this method.  
  *****/  



CHAPTER 14 ■ A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

332

  char *Dates::GetDayOfWeek()  
  {  
    return today;  
  }   

 Note the warning in the  GetDayOfWeek()  description. It points out that the method can only return 
something useful if  DayOfTheWeek()  was called first. This is necessary to do that so the  today[]  class 
member gets set. This is a bad design because it couples the two methods together so much that one can’t 
work without the other. But, as I said, I’m doing it for teaching purposes, and teaching using a bad example 
can also be instructive. (Could you improve on this bad design? Sure. Move the method prototype for 
 DayOfTheWeek()  into the  private  section of the class, and place the actual method call as the first line of 
 GetDayOfWeek() . Because  DayOfTheWeek()  is now  private , it cannot be called outside the class, thus making 
it a  helper function  for  GetDayOfWeek() . However, you would now have to pass in the month, day, and year 
as parameters to  GetDayOfWeek() . It’s still a little clunky, but it would work.) 

 The actual algorithm for determining the day of the week is based on the lunar calendar and is fairly 
complex. However, you should be able to explain why the  static  storage modifier was used for the  days[][]  
array. If not, go back and reread the previous section so you do understand why. You do  not  want to appear 
unprepared when this discussion comes up at the next cocktail party. 

 The  today[]  class member has the day of the week for the date that was passed to the  DayOfTheWeek()  
method. The  GetDayOfWeek()  method can then be called to extract the day from the  today[]  array, even 
though  today[]  is  private  to the class. You may hear other programmers refer to methods that access  private  
members of a class as  accessor methods .  

     Constructors and Destructors 
 When you use C++, things aren’t always what they seem. As we mentioned before, a class declaration does 
not automatically instantiate an object of the class. You must do that yourself. With the  Dates  class, you can 
define a  Dates  object using the syntax: 

  Dates myDates;  

 The result is a  Dates  object that you have instantiated (or defined) with the name  myDates . What is 
not so obvious is that, behind your back, the C++ compiler created a constructor method for you that is 
responsible for defining the members of the  Dates  class as part of an invisible background process. The 
constructor automatically sets all values types to 0 and all reference types to  null . So when you defined 
the  myDates  object, there’s a lot of quiet, sneaky, stuff going on that you didn’t write. This is the way things 
are supposed to happen when you use C++. The problem is that in the Arduino world, you don’t have any 
control over the way the default constructor behaves. 

 Consider the code in Listing  14-6 . 

   Listing 14-6. Using the Dates Library 

  #include "Dates.h"  

  Dates myDates;          // This calls the default constructor  

  void setup() {  
    int i;  
    int total;  



CHAPTER 14 ■ A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

333

    Serial.begin(9600);  
    //Dates myDates;        // Default constructor, no initializer  
    //Dates myDates(2015);  // Constructor with initializer  

    for (i = 2000; i < 2017; i++) {  
      Serial.print(i);  
      Serial.print(" is ");  
      if (myDates.IsLeapYear(i) == 0) {  
        Serial.print("not ");  
      }  
      Serial.print("a leap year, Easter is on: ");  
      myDates.myEaster.year = i;  
      myDates.GetEaster(&myDates);  
      total = myDates.julian(3, 5, i);  
      Serial.print(myDates.myEaster.easterStr);  
      Serial.print("  jullian days to May 3: ");  
      Serial.println(total);  
    }  
  }  
  void loop() {}   

 We have added two constructors to the  Dates.cpp  file and added their prototypes to the associated 
header file. The two constructors are presented in Listing  14-7 . We have left off their descriptions to keep the 
listings as short as possible. The first constructor has no argument list, whereas the second one is the syntax 
for initializing the  year  member we added to the  private  section of the header file. 

    Listing 14-7. Adding Two Constructors to Dates.cpp 

  Dates::Dates(void)  
  {  
     Serial.println("We're in the constructor.");  
  }  

  Dates::Dates(int year):year(year)  
  {  
     Serial.println("We're in the init constructor.");  
  }   

 When we run the version using the default constructor presented in Listing  14-7 , the output looks like 
Figure  14-2 . Even though the default constructor is called, no output is seen. The reason is because the  Serial  
object hasn’t been initialized yet.  



CHAPTER 14 ■ A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

334

  Figure 14-2.    Using the Default Constructor       

 Now, comment out the global definition of  myDates  and uncomment the first definition inside of 
 loop() , recompile, and run the program. The output appears in Figure  14-3 . If you look at the first line 
in Figure  14-3 , you can see that the no-initializer constructor has been called. If you uncomment the 
constructor that passes the year as an argument in  setup() , the proper constructor is called. You should 
be able to convince yourself that the parameterized constructor could also be written as what’s shown in 
Figure  14-3 .  

 



CHAPTER 14 ■ A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

335

  Dates::Dates(int yr)  
  {  
     Serial.println("We're in the init constructor.");  
     year = yr;  
  }  

 So, when do you write your own constructor, and when do you just rely on the default constructor? If 
you have a reason to have a class start with specific values for its members, then you can write a constructor 
that meets your specific needs. If you can live with the initial state of the object having its members with the 
values 0 or  null , there’s no reason to write your own constructor. For example, I once wrote a membership 
program for a club in Indianapolis. Because virtually all of the members were from Indianapolis, I initialized 
the  City  and  State  members of the class to “Indianapolis” and “IN” as default values for any new object 
instantiated from the class. Because people do make mistakes, anything you can do to minimize their inputs 
is usually a good thing. 

  Figure 14-3.    Constructor in setup()       

 



CHAPTER 14 ■ A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

336

 You can also call a  destructor  in C++, which should free the resources associated with the object. The 
syntax is 

  Dates::~Dates(void)  
  {  
  }  

 and the destructor is called when the object goes out of scope. Note the tilde operator, ( ~ ). You can also call it 
directly, as in  myDates.~Dates() . The goal of a destructor is to allow the resources associated with the object 
to be released for reuse. 

 Truth be told, most Arduino programmers do not use constructors or destructors. We only present this 
small discussion about them so you know they exist. If you need to initialize a class member with a value, 
most Arduino programmers create a method that initializes the member. This is, for example, the exact 
purpose of the  Serial.begin()  method of the  Serial  object. You use the  begin()  method to set the default 
state for the baud rate to 9600 baud (in most cases). However, if you feel you need to override the default 
constructor for your class, you should research the topic thoroughly. We’ve only presented enough here for 
you to shoot yourself in the foot. 

 That said, you should be able to read the header and  .cpp  files you find in the  libraries  subdirectory and 
get a pretty good feel for what the code does. Don’t be afraid to experiment with the library code; especially 
the code you find in a library’s  examples  directory.  

     Conclusion 
 Well, our journey through the C language has come to an end. However, that doesn’t mean you are done 
learning about C. I’ve been using C for almost 40 years now and I am still learning new techniques. Anytime 
I have a new programming task, my first stop is an Internet search on the topic of concern. There are a lot of 
incredibly bright people out there writing some very good code. Likewise, there is even more RDC out there, 
too. Hopefully, as you learn more and more, you’ll appreciate elegance of finely crafted code and appreciate 
the efforts of those whose shoulders we all stand on. 

 EXERCISES

     1.    What is the OOP trilogy? 

 Answer: The OOP trilogy is encapsulation, inheritance, and polymorphism.  

    2.    If you wish to make a polymorphic method, what condition must be true? 

 Answer: The method signatures must be different.  

    3.     If you have a  private  class member and wish to be able to change it, how 
should you do it? 

 Answer: Write a class method (i.e., an  accessor method ) that can be called to change the 
 private  member of the class. This affords you the chance to perform error checking on the 
new value, too.  



CHAPTER 14 ■ A GENTLE INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING AND C++

337

    4.     If a  private  class member is  int gender  and another member is a  boolean 
pregnant , how would you handle an input for  gender  as Male and pregnant as 
 True ? 

 Answer: This type of error checking is called  consistency error checking  and it is not easy 
to be complete on consistency error checking because there are ill-defined cases. For 
example, if  gender  is Female, and  pregnant  is True, that seems reasonable until you notice 
that she’s 87 years old. How far you carry such error checking depends upon the cost of 
being wrong vs. the cost of making sure it’s right.  

    5.    How is encapsulation enforced in the OOP world? 

 Answer: If you truly want to encapsulate a variable, you should make it a  private  member of 
a class and then use a  public  accessor method to provide the means of changing its state. 
Any error checking should be part of the method. Once done, the only way to gain access to 
the  private  member is through a class object using the dot operator and the class method.  

    6.    Do I have to use a class header file and a class  .cpp  file? 

 Answer: Technically, no. You could write everything in a single cpp file. However, that's 
probably not a good idea and it would be best for you to stick with the  *.h  and  *.cpp  model 
for now.          



339© Jack Purdum 2015 
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming 
for the Arduino, DOI 10.1007/978-1-4842-0940-0

    APPENDIX A   

 Suppliers and Sources      

     This appendix presents information about where you can go for further information on some of the many 
Arduino-compatible boards, sensors, and other peripheral devices. 

     Starter Kits 
 These are great if you’re just getting started, as most include an Arduino-compatible board.

•     16Hertz LLC  (   www.16hertz.com     ). The Ultimate Starter Kit (see Figure  A-1 ) has just 
about everything you’d want to begin working with an Arduino Uno, including the 
board at a very competitive price (about $60). The package includes a variety of 
sensors, displays, LEDs, and even a small stepper motor and assorted jumpers. The 
company also sells Starter Kits with fewer components at lower prices.     

http://www.16hertz.com


APPENDIX A ■ SUPPLIERS AND SOURCES

340

•    HelloJack03  (   http://stores.ebay.com/hellojack03     ). This UNO R3 starter kit is 
the top-selling kit on eBay, containing 40 types of the most widely used components, 
all fully compatible with Arduino. This kit also comes with 26 tutorials for beginners. 
It is very competitively priced.   

  Figure A-1.          

http://stores.ebay.com/hellojack03


APPENDIX A ■ SUPPLIERS AND SOURCES

341

•    OSEPP  (   http://osepp.com     ). The company offers a number of Arduino-compatible 
boards and sensors. Their Starter Kit is complete and includes an Uno-compatible 
board. They also have a nicely packaged robotics kit that has everything you need to 
build a small robot, including their Uno-compatible board, motors, wheels, and so 
forth. It also comes with very good documentation for building and using the robot.  

  Figure A-2.          

  Figure A-3.          

 

 

http://osepp.com


APPENDIX A ■ SUPPLIERS AND SOURCES

342

•    Yourduino  (   http://Yourduino.com     ). This company sells their YourDuinoRobo1 
Arduino-compatible board with a variety of starter kits. The company also sells 
an I2C 16 ×2 LCD display that I really like. Their Yourduino RoboRed is a very nice 
Uno clone and I really like how they have brought out the I/O pins so that they can 
be used with female jumpers as well as the standard headers. They have several 
different starter kits priced for just about anyone’s pocketbook.     

     Shields, Boards, Sensors 

  Figure A-4.          

  Figure A-5.          

 

 

http://yourduino.com


APPENDIX A ■ SUPPLIERS AND SOURCES

343

•       4D Systems  (   www.4dsystems.com.au     ). This company has a wide product line of 
high-end displays with pretty amazing graphics capabilities. While a lot of the 
graphics power comes from onboard electronics, it probably makes sense to use 
the ATMega2560 family with these displays. The company has online support for a 
variety of microcontrollers.  

•    Seeed Studio  (   www.seeedstudio.com     ). Suppliers of many reasonably priced  m c 
boards, sensors, and shields. They submitted their Seeed Mega 2560 and SD shield 
for evaluation. Their 2560 Mega board has one of the smallest footprints I’ve seen 
for this board. I have also purchased several of their other shields, and everything 
has been of very high quality and performed as advertised. They also sent a robotic 
kit that has everything you need to build a robot. These are extremely high-quality, 
machined parts that should produce a rugged and durable system.   

  Figure A-6.          

 

http://www.4dsystems.com.au
http://www.seeedstudio.com


APPENDIX A ■ SUPPLIERS AND SOURCES

344

•    Diligent Inc.  (   www.digilentinc.com     ). The Max32 board takes advantage of the 
powerful PIC32MX795F512 microcontroller. This microcontroller features a 
32-bit MIPS processor core running at 80Mhz (quite a bit faster than the Atmel 
clock speed), 512K of flash program memory, and 128K of SRAM data memory. In 
addition, a USB 2 OTG controller, 10/100 Ethernet MAC, and dual CAN controllers 
that can be accessed via add-on I/O shields and 83 I/O lines. There is a modified 
IDE that is an Arduino look-alike and available for Windows, Mac, and Linux. (The 
board supports all three.) The modified IDE can be downloaded free at    https://
github.com/chipKIT32/chipKIT32-MAX/downloads     . I tried several of my sketches 
and all ran without modification on the ChipKit Max32. However, the compiler has 
some differences … most of them good! For example, an  int  data type for this board 
uses 4 bytes of storage and a  double  is 8 bytes, versus 2 and 4 for most Atmel boards. 
Depending upon your app, this could be a real plus in terms of range and precision. 
If you need a bunch of I/O lines and a very fast processor, this is a great choice and 
clearly worth investigating. I also found the placement of the reset button to be very 
convenient.   

  Figure A-7.          

 

http://www.digilentinc.com
https://github.com/chipKIT32/chipKIT32-MAX/downloads
https://github.com/chipKIT32/chipKIT32-MAX/downloads


APPENDIX A ■ SUPPLIERS AND SOURCES

345

•    Nextion  (   http://imall.iteadstudio.com     ). TFT displays allow inputs to be entered 
from the display screen. This display, however, avoids the rat’s nest of wires that TFTs 
usually require, and replaces them with its own serial interface using a single port. 
The device includes an editor so that you can design your own interface objects. An 
onboard SD card stores custom data. There are two sizes: 2.4″ and 4.3″, which makes 
them small enough for many different applications. The cost ranges between $20 
and $35.   

  Figure A-8.          

 

http://imall.iteadstudio.com


APPENDIX A ■ SUPPLIERS AND SOURCES

346

•    Tinyos Electronics  (   http://tinyosshop.com     ). This company supplies an 
Atmega328- compatible board, which is shown in Figure  A-9 . As you can see, relative 
to the pen cap in the photo, this is one of the smallest boards I received, but it ran all 
of my sketches perfectly. The board is well constructed and reasonably priced. Also 
note that the chip is removable. This means you could load software onto the board, 
remove the chip, and place in a bare-bones board with only a chip and a few other 
components if you wanted to do so. I used this board a lot while writing this book, 
mainly because of its size. The company also sells a wide variety of shields, sensors, 
and other products for the Arduino boards.   

•    Cooking Hacks  (   www.cooking-hacks.com     ). This company supplies a GPS module 
that is depicted in Figure  A-10 . I find this a very interesting piece of hardware and I 
hope to do more work with it once this book is put to bed. The web site also provides a 
tutorial on using the module, as well as downloadable software for testing purposes.      

  Figure A-9.          

 

http://tinyosshop.com
http://www.cooking-hacks.com


APPENDIX A ■ SUPPLIERS AND SOURCES

347

     Specific Parts Sources 
 There are a number of places where you can go to purchase electronic components for your projects. Some 
of the ones I have used are listed next. You should also use eBay and Amazon as sources and references for 
parts. With more than 100 purchases on eBay, including from many foreign suppliers, I have never had a 
problem. 

      Bezels 
  RMF Products  (   www.bezelsource.com     ). This company is one of the few that offers bezels for LCD displays 
and other components. It’s pretty tough to make an LCD project look professional without something to hide 
the fact that you didn’t cut a perfect hole in the project box. The bezels come in different sizes and include 
a filter (if you want to use it) and mounting hardware. Depending on the size, you can buy them quantity 
one for $7.50 to $8.00. However, if you have a minimum order totaling $25, the cost drops to about $2 each. 
I would opt for about a dozen to get the minimum order size. You will likely use all of them anyway, or you 
can sell them to friends (e.g., ham radio club) for their projects.  

  Figure A-10.          

 

http://www.bezelsource.com


APPENDIX A ■ SUPPLIERS AND SOURCES

348

     Jumper Wires 
  Leo Sales Ltd.  Good quality jumpers with/without connectors. Carried by numerous domestic stores. 
Search the Internet for the closest supplier to you.  

     Project Cases 
  Parts Express  (   http://parts-express.com     ). Component supplier with good project cases. A variety of 
other useful parts, too.  

     Domestic Parts Suppliers 
•      All Electronics  (   www.allelectronics.com     ). Components supplier.  

•    Debco Electronics  (   www.debcoelectronics.com     ). Components supplier and a fun 
place to shop. A mom-and-pop place that’s like the old hardware stores with bin after 
bin of parts.  

•    Digi-Key Electronics  (   www.digikey.com     ). Components supplier. No minimum 
order.  

•    Jameco Electronics  (   www.jameco.com     ). Components supplier.  

•    Kbell Engineering  (   http://plasmadyn.en.hisupplier.com     ). Source for the 
Leonardo Pro Mini board.  

•    Martin P Jones & Associates  (   www.mpja.com     ). Components supplier. Their monthly 
e-mail specials are interesting. They are a good source for all components, including 
power supplies.  

•    Mouser Electronics  (   www.mouser.com     ). Components supplier.  

•    Radio Shack  (   www.radioshack.com     ). Components supplier. Great for when you 
forgot to order that one part that makes it all work. Sadly, the company may not even 
make it to press time.         

  Figure A-11.          

 

http://parts-express.com
http://www.allelectronics.com
http://www.debcoelectronics.com
http://www.digikey.com
http://www.jameco.com
http://plasmadyn.en.hisupplier.com
http://www.mpja.com
http://www.mouser.com
http://www.radioshack.com


349© Jack Purdum 2015 
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming 
for the Arduino, DOI 10.1007/978-1-4842-0940-0

    APPENDIX B   

 Electronic Components 
for Experiments      

     In this appendix, you are given a short list of the components that you need to implement the experiments 
mentioned in this book. Chapter   1     also discusses what you need. The major items are repeated here, plus a 
few other thoughts you may want to consider. 

   Microcontroller Board 
 No big surprise here. You probably already have a board. If not, Appendix   A     presents some board options that 
you should consider, as I have used all the boards mentioned there and any one of them would be a good 
choice. So, which one should you choose? It depends. For the most part, I rarely have run out of flash memory 
or EEPROM. There are times when I bumped into the SRAM limit, but not all that often. For some projects, 
I used a 2560 board because of the larger number of I/O pins and more memory. In certain situations, more 
pins is a better solution than multiplexing. Again, it depends upon your needs. You should be able to purchase 
a low-end Arduino-compatible board for less than $10. You can find an Atmega2560 board for around $15. 
Personally, I start all projects with the least expensive board and “move up” if the project demands it.  

   Solderless Breadboard 
 This is a necessity if you plan to do any experimentation. I like the board shown in Figure   1-2     because it’s 
large enough to hold a lot of components but small enough to fit easily on my work desk. It also has points 
for connecting an external power supply. You should be able to buy a breadboard with over 2000 tie points 
for less than $20. In most cases, you’ll find deals that even throw in a bunch of jumper wires, too.  

   Electronic Components 
 This is a catchall category that includes LEDs, jumper wires, resistors, and so forth. Keep in mind that 
the power supplied by the Arduino I/O pins is very limited. As a result, I created a small “power supply” 
(see Figure  B-1 ) that uses an LM7805 to provide 5 volts at currents of about 1 ampere. There is a connector 
seen near the top-right edge of the board that accepts input from a 5V “wall wart” capable of supplying up to 
1.5 amps of current. I bought a lot of 10-piece LM7805 voltage regulators on eBay for less than $2.50, including 
shipping. My guess is that with the perf board, the two electrolytic capacitors, the resistor, and the LED, I have 
less than $1 tied up in the board. There are two pins at the left edge of the board that supply 5 volts. The mini 
board is plugged into my breadboard when I feel that I need more power than what the USB cable can provide.  

http://dx.doi.org/10.1007/978-1-4842-0940-0_1
http://dx.doi.org/10.1007/978-1-4842-0940-0_BM1
http://dx.doi.org/10.1007/978-1-4842-0940-0_1#Fig2


APPENDIX B ■ ELECTRONIC COMPONENTS FOR EXPERIMENTS 

350

 For the simple circuits described in this book, all you’ll need is a few LEDs and some resistors. Chapter   13     
does discuss some specialty sensors and parts if you wish to construct those projects, but Appendix   A     can 
still be used as a source for the parts. All the components used in this book can be purchased locally at 
your favorite parts supplier. If you need to save every penny, check online to see if your area has a local 
amateur (i.e., “ham”) radio club. They sometimes have flea markets that are a great source for inexpensive 
electronic components. If you have a local college or university nearby, check if they have an engineering or 
physics department. They may have ideas for finding local parts. If those avenues fail, there is always online 
purchasing.  

   Online Component Purchases 
 I am often asked if I feel confident in purchasing electronic items and components online. Definitely, yes. 
I have purchased items online from the suppliers mentioned in Appendix   A    , and I have never had a problem. 
Quite honestly, I always check eBay to get an idea of the market price for any item I don’t use on a regular 
basis. If nothing else, eBay makes it easy to find out the price of things. When possible, I support my local 
shops. Also, Amazon carries many items you find on eBay, usually at fairly competitive prices. It’s worth 
checking both sources. 

 Perhaps the second most often question I get asked is my experience using eBay to purchase items 
online. I know that I have made more than 100 purchases on eBay for various items. Of those purchases, 
I have never had one bad experience, especially with the electronics/component purchases I’ve made. Do 
I buy from China? Absolutely. Although I’ve made “bulk” purchases (e.g., 100 resistors or capacitors) from 
domestic suppliers, I’ve also made bulk purchases from China without a problem. While it’s nice to be able 
to drive to my local Radio Shack, Micro Center, or Debco and buy that odd part I didn’t have at home, when 
I needed 125 blue LEDs for a 5×5×5 LED cube project, I shopped around. Not too long ago, I purchased 
150 LEDs with dropping resistors for less than $10. True, it took about eight days to get them, but they were 
postage paid and exactly what I ordered. 

 Where you buy your components is up to you. If I was a bazillionaire, I probably would just pay 
whatever the price is to have the item(s) tomorrow. Alas, unless you people start buying tens of thousands of 
copies of this book, I will still need to shop around for a good price. After a while, you’ll find a few suppliers 
that you’re happy with and you’ll tend to use them over and over.  

  Figure B-1.    A small voltage regulator circuit       

 

http://dx.doi.org/10.1007/978-1-4842-0940-0_13
http://dx.doi.org/10.1007/978-1-4842-0940-0_BM1
http://dx.doi.org/10.1007/978-1-4842-0940-0_BM1


APPENDIX B ■ ELECTRONIC COMPONENTS FOR EXPERIMENTS 

351

   Experiment! 
 Lastly, I would hope you enjoy experimenting, even if you don’t consider yourself an expert. True, electric 
circuits can be harmful, so you do need to be careful, especially with 120V circuits. Even a wall wart 
supplying 5 volts and low current deserves respect. Still, I would hope you’re willing to try things on your 
own. I’ve smoked my share of resistors and sent more than one LED to supernova heaven, but I learned 
things during the process. My interest in electronics started before I got my amateur radio license in 1954, 
and it’s never waned since. I hope that you find your microcontroller projects to be just as much fun as I 
have mine. 

 Experiment and enjoy!     



353© Jack Purdum 2015 
J. Purdum, Beginning C for Arduino, Second Edition: Learn C Programming 
for the Arduino, DOI 10.1007/978-1-4842-0940-0

     Index 

          A 
  abs() , 194  
    Accessor methods  , 332, 336, 337  
    Address of operator  (&) , 148, 170–171, 173, 175, 177, 

178, 182, 187, 194, 204, 230, 239  
   Advantage of a  union  , 233  
    Algorithm  , 28, 30, 59, 108, 121, 126, 129, 132, 133, 

290, 304, 305, 315, 332  
   American National Standard Institute (ANSI) , 1, 23, 

45, 98, 119, 149, 205, 228, 253  
   American Standard Code for Information 

Interchange (ASCII) , 31, 49–53, 57, 96, 128, 
136, 191, 225, 259, 262, 288  

   Ampersand (&) , 263, 269  
   Angle brackets (<>) , 89, 160, 255, 258, 270  
    Anode  , 39, 73, 75  
    Arduino contributed libraries  , 279  
    Arduino core libraries  , 279–287  
   Arduino experimenter kits , 3  
    Arduino.h header fi le  , 53, 285, 289, 297, 328  
   Arduino libraries , 136, 246, 277–298  
   Arduino Sandwiches , 244  
   Arduino Starter Kits , 2, 78, 311  
    Argument  , 133  
    Argument list  , 57, 121–126, 129, 209, 215, 323, 333  
   Arguments  vs.  Parameters , 133–134  
    Array  , 53, 180–185  
   Array data type , 58–59, 193  
    Array elements  , 58, 238  
   ArrayElementSize(x) , 114  
   Array generalizations , 58–59  
    Array index  , 58, 180, 181  
   ARRAYLENGTH() , 261  
    Array name  , 102, 105, 114, 175, 177, 178, 181, 182, 

194, 199, 202, 208, 213, 231  
   Array of structures , 222, 231–232  
   Arrays of pointers to function , 210–214  
   ASCII code , 31, 191, 288  
   ASCIITable , 50  

    Assignment operator  , 25, 48, 54, 62, 64, 68, 72, 76, 
83, 116, 173–174, 222, 223  

    Assignment statements  , 61–62, 64, 170, 232  
   Assumptions , 2–3  
   Asterisk (*) operator , 26, 166, 171, 215  
   ATmega2560 , 5, 6, 138, 343, 349  
   Atmel , 1, 3, 5, 10, 22, 52, 160, 233, 305–307, 344  
    atoi()  , 136, 161, 163, 262, 275  
    attachInterrupt() function  , 310, 311  
   ATTiny85 chip , 5  
   Attribute list , 60, 61, 123, 157, 158, 247, 248, 287  
   Attributes , 45, 215, 326  
   Auto variables , 152  

            B 
  Backpack , 27, 39–41, 48, 57, 71, 77, 80, 86, 94, 105, 

120–122, 124, 126, 129, 133, 137, 139, 175, 
187, 293  

   Backpack analogy , 27, 39–40, 57, 120, 137  
   Backslash character () , 224  
   Bad design , 65, 332  
   Bad news , 2, 41–42, 67, 151, 233, 305, 330  
    Base class  , 322  
   9600 Baud , 18, 336  
   Baud rate , 18, 22, 86, 110, 111, 234, 336  
    begin()  method , 18, 336  
   Binary data , 19, 45, 260  
   Binary digits , 45  
    Binary expressions  , 24  
   Binary numbers , 48–49  
    Binary operators  , 24, 69, 263, 267, 271  
   Binary representation , 261, 269  
   Bit packing , 268  
   Bits , 45, 48  
    Bit shifting  , 49, 128, 268, 270  
   Bit shift types , 267  
   Bitwise AND operator , 263–265, 268  
   Bitwise Exclusive OR (XOR) , 263, 266–267, 271  
   Bitwise masks , 264  



■ INDEX

354

   Bitwise NOT operator , 263, 266–267  
   Bitwise operators , 259, 263–267, 270, 271  
    Bitwise OR operator  , 265, 309  
   Bitwise shift operators , 267  
   Black boxes , 27, 147, 241  
   Black wires , 73  
   Blink program , 34–36, 42, 72–78, 88, 179–180  
   BlinkWithoutDelay , 42  
   Block , 300  
    Body  , 98  
   Bold , 296  
    Boolean  data type , 47–49, 86  
    Bootloader  , 3, 4, 18  
    Bottom Of Stack (BOS)  , 138  
   Boundary conditions , 116  
   Braces , 18, 27, 32, 72, 86, 94, 114, 222  
   Brackets , 54, 89, 105, 160, 177, 206, 214, 255, 258, 

259, 290  
    Breadboard  , 6–7, 73, 91, 263, 349  
    Break  statement , 85–87, 106–108  
   Th e Bucket Analogy , 62–64, 233  
   Bug , 2, 66, 83, 116, 122, 143, 192, 237  
   Build process , 157, 277  
    BumpFrame()  method , 300  
   Byte data type , 45, 48, 51–52, 267  
   4-Byte pointers , 168  

            C 
  Calling a function , 39, 40, 43  
    Camel notation  , 47  
   Carat operator (^) , 266  
   Cascading if statements , 80–82  
   Case fall through , 86  
   Case sensitive , 40, 47, 53, 80  
   Case statement , 85, 86, 88  
   Cast operator , 64–66, 68  
   Cast rule , 65  
   Cathode , 39, 73, 75  
   #cc6600, plain , 295  
   Central processing unit (CPU) , 19, 41, 42, 52, 70, 

238, 306, 307  
   CHANGE symbolic constant , 311  
   Change the state , 99, 101, 181, 293, 326  
   Character constants , 51  
    Child classes  , 322  
   chipMAX IDE , 10  
    Class  , 222, 288, 323  
   Class attributes , 326  
    Class method prototypes  , 159  
   Class properties , 288, 326  
   Closing brace (}) , 18, 27, 55  
   Coding style , 72, 88, 94, 114–115, 118, 133, 134, 166  
    Cohesive function  , 126, 127, 141  
   Colon character (:) , 86  

   Comma-delimited list , 99  
   Commas , 121, 271  
    Comment lines  , 36  
   Comments , 2, 31, 35–37, 115, 149, 226, 234, 304  
   Compatibility , 285  
    Compile  , 19  
    Complex data defi nitions  , 209, 214, 216  
   Complex expression , 24–26, 100, 130, 132  
   Compound equivalents , 268  
   Conditional directives , 257  
   Conditional preprocessor directives , 258  
   Confi guration data , 4, 234  
   Consistency , 72, 114, 125, 134, 337  
   Consistency error checking , 337  
   Constant lvalues , 202  
    Const  generalizations , 76  
    Const  keyword , 75, 76, 287  
   Contents of the bucket , 64  
   Context , 58, 59, 88, 95, 171, 172, 199  
    Continue  statement , 107, 109  
   Contributed libraries , 258, 279, 281, 283–285, 297  
   Convert the ASCII code , 191  
   Couples , 332  
    Coupling  , 126, 127, 141  
    .cpp  , 289  
    (*.cpp)  , 321  
    ctype.h  , 259  
   Current working directory , 259  

            D 
   Data declarations  , 61, 123, 157, 158, 211, 258, 329  
    Data defi nition  , 47, 58, 61, 76–78, 88, 93, 123, 147, 

152, 153, 157–159, 166, 173, 209, 214, 215, 
222, 234, 329  

   Data Direction Register , 306, 309  
   Data dribble , 64  
   Data hiding , 321  
   Data logging , 234–242  
    Data type  , 45  
   Data type checking , 61  
    Data type modifi er  , 76  
    Data type specifi er  , 76, 166, 193, 214, 220  
   DDRD , 306  
   Debouncing , 309  
   DEBUG , 235  
   Debug code , 190, 193, 256  
    Declaration  , 61, 145, 211, 220, 231, 232, 278  
   Declare variables , 59  
   Decrement operator (--) , 83  
    Default inputs  , 310  
    Default  statement , 85, 87  
    Defi ned  , 61  
    #defi ne DEBUG  , 192, 193, 235, 255, 256, 315  
    #defi nes  , 90, 93, 114, 254  



■ INDEX

355

   Defi ne variables , 59  
    delay()  function , 41, 46, 47, 77  
    delay()  method , 300  
   Dereference operator (→) , 230  
    Destructor  , 332–336  
   Device driver , 13, 14  
   Digispark board , 5  
    digitalWrite()  , 41, 77, 80, 94, 179  
   digit 7-segment LED display , 299  
   Diligent chipMAX , 10, 238  
   Display step , 157, 189, 315  
    Dot operator  , 55, 136, 222–233, 240, 241, 250, 288, 

323, 328, 330, 337  
   Double data type , 1, 23, 53  
   Double including , 288, 289, 324, 327  
   Double quotation marks , 259  
    Double quote marks  , 31, 54, 160, 231, 270  
    Double quotes  , 54, 89, 255, 258  
   Do-while loop , 106–107, 116, 118, 318  
   Download , 1, 2, 8, 10, 244, 284, 304, 314, 344, 346  
   Drawbacks , 4  
   Due , 5, 6  
   Duplicate defi nition errors , 159  
   Dupont , 7  

            E 
  Easter , 287  
    Echo pin  , 311, 313  
   E2END , 237  
    EEPROM  , 281  
   EEPROM library , 234, 235, 238, 325  
   EEPROM memory , 233–234  
   EEPROM write() function , 239  
   EICRA , 307–309  
    #elif  , 89, 255, 258  
    #else  , 89, 255, 258  
   Encapsulated , 187  
    Encapsulation  , 140, 143, 147, 151, 193, 288, 321, 335  
    Endian problem  , 238  
    #endif  , 89, 193, 254, 258, 288  
   End of fi le (EOF) bit , 269  
    Enum  data type , 210–214  
   Erase/write cycles , 234  
   Error-prone process , 113, 116  
   Escape sequences , 224–225  
   Ethernet , 281, 344  
   Examples subdirectory , 158, 246  
    Expression  , 24  
    Expression1  , 71, 72, 86, 87, 94, 98–100, 102, 106, 107, 

112, 130–132, 137, 139  
    Expression2  , 98–109, 117, 130, 131, 184, 204, 207, 239  
    Expression3  , 98–106, 112, 117  
    Extensible  , 116  
    Extern  , 157  

   External , 305  
   External Interrupt Control Register A (EICRA) , 307, 309  
   External Interrupt Flag Register (EIFR) , 307–309  
   External interrupt Mask Register (EIMSK) , 307, 309  
    External interrupt pins  , 189, 305  

            F 
   Factoring  , 24  
   Falling edge , 305, 307, 311  
    #0000FF  , 295, 296  
   Fire sensors , 29, 33, 41, 305  
   Firmata , 281  
   Five program steps , 28–30, 41, 42, 91, 102, 109, 116, 

129, 189, 315  
    Flash memory  , 3–5, 21, 22, 168, 225, 234, 349  
   Flat forehead , 231  
    Flat Forehead Mistake  (FFM) , 72, 104, 201  
   Float data type , 53, 208, 232  
   Forum , 281, 285  
    Function  , 119  
    Function arguments  , 39, 105, 119, 121–123, 159, 

175, 234  
    Function blocks  , 23, 27, 28, 37, 150  
    Function block scope  , 143, 146–152  
    Function body  , 18, 124  
    Function library  , 37, 119, 134  
    Function parameters  , 40  
    Function prototype  , 123, 158, 159, 227, 259  
   Function scope , 151, 234  
    Function signature  , 123–125, 127, 129, 134, 140, 

177, 328  
    Function type specifi er  , 71, 120–125, 128, 134, 140, 

188, 296  

            G 
   generateRandomNumber()  , 94  
    GetDayOfTh eWeek()  method , 330  
   GetEaster() function , 287, 291  
    Global scope  , 105, 143, 150–151, 153, 154, 157, 161, 

249, 321  
   Global search-and-replace , 116, 254  
    Goal  , 1, 16, 30, 91, 109, 115, 127, 153, 297, 310, 336  
    Good news  , 1, 41–42, 67, 72, 75, 151, 233, 305, 330  
   Good variable name , 47  
   Graceful termination , 30  
   Ground rail , 73  

            H 
  Hard-code , 54, 315  
   Hardware interrupts , 305  
    Header fi les  , 123, 159, 160, 170, 253, 256–259, 270, 

277, 278, 285, 287, 297, 327, 329  



■ INDEX

356

    Heap  , 154, 205  
    Helper function  , 332  
   Hexadecimal , 50, 52, 125, 269, 323  
    HIGH  , 41, 77  
   High bit , 48, 49, 67, 112, 267  
   High nibble , 264, 265  
   Horizontal scrolling , 82, 95, 314, 315, 318  

            I 
   Identifi er  , 59, 63, 89, 214, 215, 248, 254  
    #if  , 254, 257–258  
    #ifdef  , 193, 254  
    #if !defi ned  , 254  
    #if !defi ned expression  , 257  
   if-else statement , 79–82, 86, 89, 255  
    #ifndef  , 159, 258  
    #ifndef Dates_h  , 288  
    if statement  , 70–72  
    if statement  block without braces , 72  
   Import Library menu option , 282, 285  
    In Circuit Serial Programming  (ICSP) , 300  
    #include  , 159–160, 255, 258–259  
    #include  preprocessor directive , 158–160, 235, 

282, 327  
   Incredibly Dumb Code (IDC) , 81  
   Increment operators (++) , 82–83  
   Indent , 70, 82, 115  
   Indent size , 70  
   Indirection operator (*) , 171–172, 174, 183, 

191, 194  
    Infi nite loops  , 97, 98  
    Inheritance  , 321, 322, 336  
   Initialization of Loop Control Variable , 97–98  
    Initialization step  , 28–31, 39, 40, 77, 91, 93, 103, 189, 

237, 315  
   Initializer list , 55  
   ino fi les , 16, 287, 329  
   INPUT_PULLUP symbolic constant , 310  
   Input step , 29–31, 40, 41, 91, 129, 157, 189, 315  
   INT0 , 306–309, 311  
   INT1 , 306–308  
   Int data type , 51, 52, 60, 61, 128, 166, 168, 209, 238, 

288, 344  
   Integrated development environment (IDE) , 1, 12  
   International Organization for Standardization 

(ISO) , 23  
   Interrupt , 305–311  
   Interrupt pins , 189, 305, 306, 308  
   Interrupt Service Routine (ISR) , 42, 43, 160, 

305–311  
   Invert an image , 266  
   Invisible libraries , 285  

   Is a relationship , 322  
   ISC00 , 307, 309  
   ISC10 , 307  
    isdigit()  function , 191  
    IsLeapYear()  function , 119, 120, 128, 133–134, 138, 

139, 158, 161, 290  

            J 
  Julian date , 329  
    julian()  method , 329, 330  
   jumper wires , 6, 7, 73, 348, 349  

            K 
  Kanji character set , 49  
    Keyword  , 46  
    KEYWORD1  , 295  
    KEYWORD2  , 295  
    keywords.txt fi le  , 295  

            L 
  Leap year algorithm , 129, 133  
   LedControl library , 304  
    Left-associative  , 26, 180  
   Left leg , 61  
   Left shift (<<) operator , 267  
   Left value , 61  
   Leonardo , 5, 6, 35, 305, 348  
    Library  , 28, 277  
   Library header fi le , 288–289  
    #line  directive , 254, 256–257  
    Linker  , 277–278  
    Linker  pass , 157  
   LiquidCrystal library , 157, 159, 281  
   LittleEndian/BigEndian problem , 238  
    Local  scope , 146, 147  
   Location value , 61  
   Logical AND operator , 130  
   Logical NOT operator (!) , 131–132, 309  
   Logical operators , 129–132, 263  
   Logical OR operator (||) , 131  
    Logic error  , 59  
   Long data type , 52, 78  
   Loop body , 98–101, 104, 107, 108, 115, 118  
   Loop Control Test , 98  
    loop()   function  , 10, 32–34, 189, 190  
    LOW  , 77  
   lowercase letter , 47, 80, 120, 136  
   Low nibble , 263, 264  
   Lunar calendar , 287, 332  
    lvalue  , 60–61  



■ INDEX

357

            M 
   Magic numbers  , 39, 88, 113, 254  
   Mandarin , 22  
   Master In, Slave Out (MISO) , 300  
   Master Out, Slave In (MOSI) , 300  
    math.h  , 259  
   MAX7219 chip , 299  
   Medieval kings , 143  
    mem*()  function , 318, 319  
    Memory  , 158  
    memset()  function , 105, 106  
    Method/function  , 18, 55  
    Method overloading  , 323  
    Methods  , 23, 288, 289, 323  
   Microcontroller (μc) , 1–3, 5, 41, 116, 343, 344, 

349, 351  
   Microcontroller ( μc) board  , 12  
    MicrosecondsToCentimeters()  method , 313  
   Mistake , 25, 30, 71, 72, 95, 114, 140, 201, 263, 355  
   Modifi ed Blink Program , 72–78, 88, 179–180  
    Modulo (modulus)  , 26, 79, 91, 94, 95, 132  
   Modulo operator (%) , 79, 94  
   Multi-line comments , 36  
   Multiplication operator , 26, 102, 171  

            N 
  Name Collisions , 129, 147–150  
    Newline character  , 136, 224, 262  
    Nibble  , 263–264  
   Non-printing characters , 47  
   Nouns , 326  
    N–1 Rule  , 58, 194  
    Null  character ('\0') , 54, 136  
   Null pointer , 168  
   Numbering system , 48, 50, 269, 323  

            O 
   Object  , 323  
    Object instantiation  , 325  
   Object-oriented programming (OOP) , 18, 55, 222, 

321–337  
   Octal (base 8) , 50, 269  
   oddWires.com , 3  
    Ohms Law  , 74  
   OLED display , 285, 318  
   One task , 28, 141  
   OOP trilogy , 321–323  
   Opening brace ({) , 18, 27, 55, 70, 124  
   Open Source C++ compiler (GCC) , 88, 90, 125  
    Operand  , 24  
    Operator  , 24  

    |= operator  , 269, 309  
    Operator precedence  , 26, 130  
   Optimizing compilers , 160, 268  
   Out of scope , 144–146, 168, 178, 193, 336  
    OUTPUT  , 40,  77   
   Output Step , 29–31, 41, 91  
    Overloaded function  , 119, 125  

            P, Q 
   Parameter  , 134  
    Parameterized macros  , 114, 253, 259–261  
    Parent class  , 322  
    Parses  , 30, 35, 274  
    Pass-by-reference  , 177, 178, 180, 185, 187, 188  
    Pass-by-value  , 137, 140, 175, 177, 180, 185, 194  
   Pass-by-value  vs.  pass-by-reference , 185–188  
   PD2 , 306, 309  
   PD3 , 306   
  pde fi les , 16   
  Percent sign , 79  
   Pin change , 305  
   PIND , 306  
   PIN registers , 306  
   Pins 0–3 , 305  
   Pin state , 77, 310  
   Plain , 80, 224, 295, 296  
   Pointer arithmetic , 198–202  
   Pointer defi nitions , 165–168, 182  
   Pointer name , 166  
   Pointer rules , 174–175  
    Pointers  , 165, 180–185  
   Pointer scalars , 166–168  
   Polarity , 75  
    Polling  , 41, 305  
    Polymorphism  , 321, 323  
    Port  , 247  
    Portable code  , 115  
   PORTB , 306  
   PORTC , 306  
   PORTD , 306  
   PORTD2 , 309  
   PORT data register , 306  
   Port selection , 12–16  
   Positive voltage rail , 73  
    Post-decrement operator  , 83  
   Post-increment operators , 82, 83, 183  
   Precedence , 230  
   Precedence of operators , 84  
    Precision  , 53, 67, 344  
    Pre-decrement  operator , 83  
   Pre-increment operators , 82, 83, 153  
   Preprocessor , 88–90  
    Preprocessor  directives , 88, 253  



■ INDEX

358

    Pretty Good Code  (PGC) , 128  
    println()  statement , 94, 174  
    Private  keyword , 288, 326  
   Private storage class , 288  
   Procedures , 23  
   Processing Development Environment (pde) fi les , 16  
   Process step , 29–31, 91, 93, 129, 157, 189  
    Program instruction pointer  , 139  
   Programming exercises , 2  
   Program starting point , 70  
    Property(ies)  , 288, 293, 322, 326  
    Prototype declaration  , 227, 326  
    Public  keyword , 288, 325–326  
    Pullup  resistors , 310, 311  
   Punctuation , 47  

            R 
  Rail , 73  
    random()  function , 91, 94, 125  
   Random number , 91, 109–112, 213  
    RandomSeed()  , 91, 93  
   RDC case , 241  
    readBytesUntil()  method , 136, 262  
    Really Dumb Code  (RDC) , 79  
   Recycling the  int  , 109, 112  
   Red-green-blue (RGB) , 296  
   Red wires , 73  
    Refactoring  , 113, 118  
   Reference option , 278  
    Reference types  , 45, 98, 177, 332  
    Register  , 152  
    Register  storage class , 152  
   Register value , 61  
   Relational operations , 69, 197–198  
   Relational operators , 24, 69–70, 98  
   Relational tests , 71, 72, 79, 82, 95, 98, 197  
   Reset pin , 306  
   Reset the pointer , 201  
   Resistor values , 74–75  
    Resolving  , 24, 26  
   Restart the IDE , 282  
   Returning from the function , 39, 40  
   Return to the caller , 39, 43, 48  
   Right-Left Rule , 197, 209, 214–215  
   Right leg , 61  
   Right shift (>>) operator , 267, 268  
   Right value , 61  
    Ring buff er  , 234, 237  
   Rising edge trigger , 307  
   Rubber feet , 8  
    Rvalue  , 61, 170  
   Rvalue-to-rvalue assignment , 171, 222  
   RXD/TXD , 306  
   RX/TX , 189  

            S 
  Sample sketches , 285  
    Scaff old code  , 235, 315  
    Scaff olding  , 193, 235, 255, 256  
    Scalar  , 175, 185, 194  
    Scalar size  , 167, 208, 216  
    Scalar value  , 168, 171  
    Scope  , 143, 178, 321  
    Scope resolution operator (::)  , 290, 328  
   SD card , 115, 242–244, 247, 281, 315, 345  
   SD library , 244  
   SD shield , 243–245, 281, 343  
   Search until , 104  
   Seed , 91  
    sei()  , 309  
    Semantic errors  , 30, 35, 59, 95, 172  
   Semicolon (;) , 25, 31, 36, 89, 98, 99, 144, 211, 220, 

222, 289  
    Serial.begin()  method , 336  
   Serial Clock (SCK) , 300  
   Serial device , 18, 31, 241  
   Serial monitor , 18, 19, 21, 22, 31, 32, 50, 86, 100, 105, 

109, 110, 136, 137, 148, 161, 188, 189, 191, 
213, 222, 225, 262, 271, 274, 299, 314  

   Serial object , 18  
   Serial Peripheral Interface (SPI) protocol , 281, 299, 

300  
    Serial.read()  , 191  
   Servo , 281, 328  
    setup()  function , 10, 18  
    Shield  , 242–244  
    Short int  , 52  
   Signature , 123–125, 127, 129, 134, 139, 140, 177, 227, 

323, 328, 330  
    Sign bit  , 48, 49, 51, 52, 112, 267, 271  
    Silent cast  , 65–66  
   Single-line comments , 36  
    Single quote marks  , 51, 54, 55, 225  
   Size of a bucket depends , 64  
   sizeof() operator , 105–106, 113, 114, 182, 261  
   Sketch , 16, 22, 35, 156, 158–160, 166, 282, 285, 292, 

305, 314, 325, 344, 346  
   Skin a cat , 80  
   Slash-asterisk pair (/*) , 36  
   Slash characters , 36  
   Smoke , 95  
   SoftwareSerial , 281  
   Sorta Dumb Code (SDC) , 80, 112–113  
   Sound sensor , 311  
    Source code  , 30, 35  
   Splash screen , 9  
   SS pin , 300  
   Stack , 48, 138–140, 154, 168, 174, 178, 179, 187, 203, 

205, 228, 234, 244  



■ INDEX

359

   Stacking , 244  
   Standard C , 23, 115, 262, 277, 285  
    Standard C header fi les  , 259, 277  
    State  , 98, 326  
    Statement  , 25  
    Statement block  , 26–27  
    Statement block body  , 27  
   Statement block scope , 144–149, 152, 153  
    Statement terminator  , 25, 211  
    Static  keyword , 153, 179, 203, 330  
   Static random-access memory (SRAM) , 4, 5, 22, 60, 

90, 146, 168, 174, 179, 201, 203, 205, 219, 
232–234, 239, 344, 349  

   Static storage class , 153–154, 275  
    stdio.h  header fi le , 170, 258, 259, 269  
    stdlib.h  , 249, 259  
   Stepper , 27, 281, 339  
   Storage classes , 152–157, 161  
   Storage class modifi er , 157  
    str*()  function , 318, 319  
   String class , 56, 57, 183, 318  
   String convention , 287  
    String  data type , 53–57, 67, 183  
    string.h  , 199, 259, 285, 286, 297  
    strncpy()  function , 297, 317  
    strtok()  function , 274, 275  
    Structure  , 220  
    Structure members  , 220, 222, 225, 230, 233, 241  
   Structures can also be use , 227  
    Structure tag  , 220, 222  
   Stubs , 213  
    Subclasses  , 322  
   Subroutines , 23  
   Supernova , 74  
   Swiss Army knife , 28, 126, 140  
   Switch bounce , 309  
    Switch  statement , 82, 84–88, 95, 106, 107, 115  
    Symbolic constant  , 39–41, 53, 159, 170, 189, 237, 

259, 288, 306, 308, 310, 311, 315  
    Syntax errors  , 36, 59, 62, 172  
   Syntax highlighting , 295  

            T 
  Tab space , 295  
   Tab stop , 70, 115  
   Tag , 210  
   Template , 221, 324  
   Termination step , 30, 32, 41, 42, 92–94, 189, 315  
    Ternary  operators , 24  
   Text editor , 1, 199, 231, 287, 295  
   Th eme.txt , 295–297  
   Th ink , 116  

    Tilde character ( ~ )  , 266  
    Tilde operator ( ~ )  , 336  
   Timer , 300  
   Tokenizer , 274  
   Tone , 283  
   Too few comments , 37  
   Too many comments , 37, 304  
    Top Of Stack  (TOS) , 138, 139  
   Trade-off  , 151  
   Train wreck , 90, 167, 230  
    triggerPin  , 313  
   Trigger ping , 311  
    True/false  , 47, 69  
   Truncated , 52  
    Truth tables  , 130, 131, 264–266  
   Two-dimensional array , 202–208  
   Two dot operators , 240, 241  
    Type checking  , 61, 122, 123, 227, 287, 289  
   Typeless data , 90, 261, 287, 321  
   Types of interrupts , 305  
    Type specifi ers  , 63–65, 67, 71, 76, 120, 122–125, 128, 

129, 134, 139, 140, 166–168, 172, 175, 179, 
188, 193, 209, 214, 215, 296  

            U 
   uint16_t  , 53  
    uint8_t  data type , 53, 328  
    Unary  operators , 24, 83, 130, 131, 171, 263, 266  
    #undef  , 89, 254–256  
    Unicode character set  , 49  
    Union tag  , 232, 236  
   Unresolved externals , 277, 278  
   Unsigned data type , 48, 52, 267, 271  
    Unsigned int  , 46, 48, 52, 62, 168, 271, 287  
   Upload , 3  
   Upload button , 20, 21, 50  
   Uppercase letters , 40, 55, 76, 120, 136, 247  
   USB cable , 3, 11, 15, 18, 305, 349  
   USB connection , 4, 11, 189  
   UTF-8 , 49  

            V 
   Valid pointer  , 166, 168  
    Value data types  , 45, 46, 177, 227  
    Variable  , 25, 45  
   Variable names , 47  
   Verbs , 59, 172, 326  
   Verify button , 21  
    void *  , 287  
    Void  data type , 57–58  
    Volatile  keyword , 160, 308  



■ INDEX

360

            W 
  Wall wart , 11, 349  
   Warts , 88  
   Well-behaved loops , 97–98, 103–104, 

106, 107  
   When to Use a for Loop , 102  
   When to Use Comments , 36–37  
   Where the bucket is stored , 64  
    While  loop , 103–105  
   Wire , 281  
    Word  data type , 52  
   Wraps around , 234, 237  

            X 
   0x  , 269  
   X3J11 committee , 23  

            Y 
   Year  property , 293  
   Yourduino.com , 3, 314, 342  

            Z 
   Zero-based indexing  , 58       


	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Assumptions About You
	Resources

	Chapter 1: Introduction
	Why Choose This Book?
	Assumptions About You
	What You Need
	An Atmel-Based Microcontroller Card
	Types of Memory
	Flash Memory
	SRAM
	EEPROM


	Making the Choice
	Board Size
	Input/Output (I/O) Pins

	Breadboard
	Miscellaneous Parts

	Installing and Verifying the Software
	Verifying the Hardware
	Attaching the USB Cable
	Selecting Your μc Board in the Integrated Development Environment
	Port Selection

	Loading and Running Your First Program
	Writing Your First Program
	What the Program Does

	Compiling and Uploading a Program

	Summary

	Chapter 2: Arduino C
	The Building Blocks of All Programming Languages
	Expressions
	Statements
	Operator Precedence

	Statement Blocks
	Function Blocks

	The Five Program Steps
	1. Initialization Step
	2. Input Step
	3. Process Step
	4. Output Step
	5. Termination Step
	The Purpose of the Five Program Steps

	A Revisit to Your First Program
	The setup() Function
	The loop() Function
	Arduino Program Requirements

	The Blink Program
	Program Comments
	Single-Line Comments
	Multi-line Comments
	When to Use Comments

	The setup() Function in Blink
	How to Find Information About Library Functions

	The loop() Function
	delay(): Good News, Bad News

	Summary

	Chapter 3: Arduino C Data Types
	Keywords in C
	Variable Names in C
	The boolean Data Type
	Walking Through the Function Call to ReadSwitchState ()
	Binary Numbers

	The char Data Type and Character Sets
	Generating a Table of ASCII Characters

	The byte Data Type
	The int Data Type
	The word Data Type
	The long Data Type
	The float and double Data Types
	Floating Point Precision

	The string Data Type
	String Data Type
	Which Is Better: String or strings Built from char Arrays?

	The void Data Type
	The array Data Type
	Array Generalizations

	Defining vs. Declaring Variables
	Language Errors
	Symbol Tables
	lvalues and rvalues
	Understanding an Assignment Statement
	The Bucket Analogy

	Using the cast Operator
	The Cast Rule
	Silent Casts


	Summary

	Chapter 4: Decision Making in C
	Relational Operators
	The if Statement
	What if Expression1 Is Logic True?
	What if Expression1 Is Logic False?
	Braces or No Braces?

	A Modified Blink Program
	The Circuit
	Circuit Resistor Values
	The Modified Blink Program
	const Keyword


	Software Modifications to the Alternate Blink Program
	The if-else Statement Block
	Cascading if statements
	The Increment and Decrement Operators
	Two Types of Increment Operators (++)
	Two Flavors of the Decrement Operator(--)
	Precedence of Operators


	The switch statement
	A switch Variation, the Ellipsis Operator ( …)
	Which to Use: Cascading if-else or switch?

	The goto Statement
	Getting Rid of Magic Numbers
	The C Preprocessor
	Heads or Tails
	Initialization Step
	Input Step
	Process Step
	Output Step
	Termination Step

	Summary

	Chapter 5: Program Loops in C
	The Characteristics of Well-Behaved Loops
	Condition 1: Initialization of Loop Control Variable
	Condition 2: Loop Control Test
	Condition 3: Changing the Loop Control Variable’s State

	Using a for Loop
	Program to Show Expression Evaluation
	When to Use a for Loop

	The while Loop
	When to Use a while Loop
	The sizeof() Operator

	The do-while Loop
	Why a do-while is Different from a while Loop

	The break and continue Keywords
	The break Statement
	The continue Statement

	A Complete Code Example
	Step 1. Initialization
	Step 2. Input
	Step 3. Process
	Step 4. Output
	Step 5. Termination
	Listing 5-5 Is SDC
	Getting Rid of a Magic Number
	A Macro for an Array Size


	Loops and Coding Style
	Portability and Extensibility
	Summary

	Chapter 6: Functions in C
	The Anatomy of a Function
	Function Type Specifier
	Function Name
	Good Names, Bad Names

	Function Arguments
	Function Signatures and Function Prototypes

	Function Body
	Overloaded Functions

	What Makes a “Good” Function
	Good Functions Use Task-Oriented Names
	Good Functions Are Cohesive
	Good Functions Avoid Coupling

	Writing Your Own Functions
	Function Design Considerations
	Function Type Specifier
	Showoff Code

	Function Name
	Argument List
	Function Body

	Logical Operators
	Logical AND Operator (&&)
	Logical OR (||)
	Logical NOT (!)

	Writing Your Own Function
	The IsLeapYear() Function and Coding Style
	Arguments vs. Parameters

	Why Use a Specific Function Style?

	Leap Year Calculation Program
	Passing Data into and Back from a Function
	Pass-by-Value

	Summary

	Chapter 7: Storage Classes and Scope
	Hiding Your Program Data
	The Three Scope Levels
	Statement Block Scope
	What Does Out of Scope Mean?

	Why Use Statement Block Scope?

	Function Block Scope
	Name Collisions and Scope

	Global Scope
	Trade-offs
	Global Scope and Name Conflicts

	Scope and Storage Classes
	The auto Storage Class
	The register Storage Class
	The static Storage Class
	The Effect of the static Storage Class
	The extern Storage Class
	Adding a Second Source Code File to a Project
	Using the extern Keyword
	Why a New Source Code File?


	Function Prototypes
	#include Preprocessor Directive
	A common #include Idiom
	Where Are the Header Files Stored?

	The volatile keyword
	Summary

	Chapter 8: Introduction to Pointers
	Defining a Pointer
	Pointer Name
	Asterisk (*)
	Pointer Type Specifiers and Pointer Scalars
	Pointer Scalars

	Why All Arduino Pointers Use Two Bytes for Storage
	Pointer Initialization
	Using the Address-Of Operator
	The Indirection Operator (*)
	Using Indirection
	Using the Indirection Operator in an Assignment
	Summary of Pointer Rules


	Why Are Pointers Useful?
	Modified Blink Program
	Pointers and Arrays
	The Importance of Scalars
	Pass-by-Value vs. Pass-by-Reference

	Your Turn
	One Approach
	One Solution
	Debug Statements Using the Serial Object

	Summary

	Chapter 9: Using Pointers Effectively
	Relational Operations and Test for Equality Using Pointers
	Pointer Comparisons Must Be Between Pointers to the Same Data

	Pointer Arithmetic
	Constant lvalues

	Two-Dimensional Arrays
	A Small Improvement
	How Many Dimensions?

	Two-Dimensional Arrays and Pointers
	Treating the Two-Dimensional Array of chars As a String

	Pointers to Functions
	Arrays of Pointers to Functions
	enum Data Type

	The Right-Left Rule
	Summary

	Chapter 10: Structures, Unions, and Data Storage
	Structures
	Declaring a Structure
	Defining a Structure
	Accessing Structure Members
	The Dot Operator

	Escape Sequences
	Memory Requirements for a Structure
	Returning a Structure from a Function Call
	Using Structure Pointers
	Initializing a Structure
	Arrays of Structures

	Unions
	EEPROM Memory
	Using EEPROM
	Data Logging


	Other Storage Alternatives
	Shields
	Other Uses for SD Storage


	typedef
	Summary

	Chapter 11: The C Preprocessor and Bitwise Operations
	Preprocessor Directives
	#undef
	#line
	#if, Conditional Directives
	#else, #endif

	#include

	Parameterized Macros
	Decimal to Binary Converter
	Bitwise Operators
	Bitwise AND
	Bitwise OR
	Bitwise Exclusive OR (XOR)
	Bitwise NOT (~)

	Bitwise Shift Operators
	Bitwise Shift Left (<<)
	Bitwise Shift Right (>>)


	One More Example
	Using Different Bases for Integer Constants
	Parameterized Macros . . . Continued

	Summary

	Chapter 12: Arduino Libraries
	The Linker
	Libraries
	Arduino Libraries
	The Arduino Core Libraries
	Using the Forums
	Using a Core Library
	Contributed Libraries
	Using a Contributed Library

	Other Libraries

	Writing Your Own Library
	The Library Header File
	The Library Code File (Dates.cpp)

	Setting the Arduino IDE to Use Your Library
	A Sample Program Using the Dates Library
	Adding the Easter Program As Part of the Library
	The keywords.txt File
	Keyword Coloring (theme.txt)

	Summary

	Chapter 13: Interfacing to the Outside World
	The Serial Peripheral Interface (SPI)
	An SPI Program
	Interrupts and Interrupt Service Routines (ISR)
	Interrupt Details
	An External Interrupt Program

	An Alternative Interrupt Program
	Ultrasonic Sensor Program
	A Programming Problem
	My Solution

	Conclusion

	Chapter 14: A Gentle Introduction to Object-Oriented Programming and C++
	The OOP Trilogy
	Encapsulation
	Inheritance
	Polymorphism

	The OOP Class
	Inside an OOP Class
	OOP and Class Objects
	public vs. private in a Class

	The EEPROM.cpp File
	Add julian() to Dates
	Adding a private Class Member
	Constructors and Destructors
	Conclusion

	Appendix A: Suppliers and Sources
	Starter Kits
	Shields, Boards, Sensors
	Specific Parts Sources
	Bezels
	Jumper Wires
	Project Cases
	Domestic Parts Suppliers


	Appendix B: Electronic Components for Experiments
	Microcontroller Board
	Solderless Breadboard
	Electronic Components
	Online Component Purchases
	Experiment!

	Index

