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1. Portfolio Return 
 

Let i be the expected return of asset i, ie.: 

 

)R( ii   

 

Let e be the n x 1 column vector of (expected) returns, ie.: 

 

 Tn21  e  

 

Let w be the n x 1 column vector of asset weights, ie: 

 

 Tn21  w  

 

such that the expected return of a portfolio is: 

 

ew ..)R( T
n

1i

iipp  


 

 

It is worth noting that w could be a vector of weights in a portfolio or it could be a vector of active weights 

(ie. a portfolio’s over/under exposure to assets compared to a benchmark exposure).  In the case of the 

former, the constraint on this vector is: 

 

1.T 1w  

 

ie. the weights must sum to 100%.  In the case of w being active weights, the constraint is: 

 

  0.T 1w  

 

ie. the active weights ("unders and overs”) must sum to 0.   

 

When using active weights p  represents the expected active return of the portfolio.  

 

 

2. Portfolio Variance 
 

Let V be the covariance matrix: 
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21

22221

11211

V  

 

such that the variance of the portfolio’s returns is: 

 

wVw ..T2

p   

 

If active weights are used then 
2

p  represents the square of Tracking Error.  
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3. Optimal Weights 
 

The goal of mean-variance optimization is to determine w such that either: 

 

a) 
2

p  is minimized for a targeted p ; or 

b) p  is maximized for a desired 
2

p . 

 

When w represents active weights, either of the above translates into optimizing the Information Ratio, since: 

 

 Information Ratio = IR = 

p

p




 

 

and minimizing 
2

p is the same as minimizing p . 

 

The solution to w is: 

 

   p

1111 ...A..C..A..B.
D

1
  1VeVeV1Vw  

 

which, for the active weight scenario, simplifies to 

 

   p

11 ...A..C.
D

1
  1VeVw  

 

where p  is the (given) targeted return and  A, B, C and D are the scalars defined as: 

 

A = e
T
.V

-1
.1  

 

B = e
T
.V

-1
.e 

 

C = 1
T
.V

-1
.1  

 

 D = BC – A
2
 

 

The reader is referred to the Appendices for proofs of the above. 

 

 

4. Efficient Frontier 
 

One of the paradigms of Mean-Variance Optimization is that, for a given (e, V) combination, there exists a 

continuous curve in (
2

p , p ) space (ie. Cartesian co-ordinates) that charts all optimal portfolios.  This curve is 

called “the Efficient Frontier” and has the equation: 

 

 
C

1

C

A
.

D

C
2

p

2

p 







  

 

which can be rearranged to: 
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C

1
.

C

D

C

A 2

pp  

 

For the active weight analysis, these equations simplify to: 

 

 pp .
C

D
  

  

Again, the reader is referred to the Appendices for proofs. 

 

From these we can see that, in the non-active case, there is no possible w that can give a 
2

p  less than: 

 

C

1
 

 
 and that the return on this “minimum variance” portfolio is: 

 

 
C

A
 

 

 

5. Practicalities 
 

Despite the above theory being very strong, its application in the workplace becomes problematic for a 

number of reasons. 

 

Ex-Ante vs Ex-Poste 

It is of little value determining what the historical (ex-poste) efficient frontier was.  This is why e was defined 

as the vector of expected returns.  The problem is that one person’s expectation will most likely differ from 

another person’s resulting in different ‘optimal’ weights.  Furthermore, actual returns may turn out to be very 

different from what was expected ie. with hindsight, w turned out to be sub-optimal.  This forecast error is 

more a measure of a portfolio manager’s ability to predict the future.  Of course, there is nothing to stop a 

portfolio manager revising his/her forecasts and rebalancing their portfolio accordingly and this is what is 

often done by practitioners of mean-variance optimization. 

 

Large N 

The covariance matrix, V, has N x N elements.  Since it is symmetric there are (N x N – N)/2 unique co-

variances and N unique variances that must be estimated.  Then V must be inverted (to get V-1
).  Obviously, 

as N gets large this requires a significant amount of computational effort.  Because of this, in practice, it is 

usual to see mean-variance optimisation more often used in asset allocation than in stock selection. 

 

Estimation 

There are a number of ways to estimate e and V.  Aside from the proverbial ‘thumb suck’, any statistical 

estimation requires judgement on a number of matters, eg. what time period to gather historical data for, 

whether to give more weight to recent events, less weight or equally weight them.  Furthermore, underlying 

such an approach is the assumption that the time series data used comes from a stationary distribution.  

 

Short Selling 

The analysis performed above assumes short positions can be taken in any security and there is no restriction 

on the amount of this shorting.  In practice, however, short position on a number of assets may not be 

possible and, therefore, the Lagrange analysis done in the Appendices needs to be expanded to incorporate 

additional constraints. 
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Appendix A 
 

Let i be the expected return of asset i, ie.: 

 

)R( ii   

 

Let e be the n x 1 column vector of (expected) returns, ie.: 

 

 Tn21  e  

 

Let V be the covariance matrix: 
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Let w be the n x 1 column vector of asset weights, ie: 

 

 Tn21  w  

 

such that the expected return of a portfolio is: 

 

ew ..)R( T
n

1i

iipp  


 

 

and the variance of the portfolio’s returns is: 

 

wVw ..T2

p   
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To find the optimal portfolio we want to find w that minimises 
2

p  for a given p  (or maximises p  for a 

given 
2

p ), ie.: 

 

 Minimise 
2

p  subject to p

T . ew  and 1.T 1w  

 

Since wVw ..T2

p  , and minimising wVw ...
2

1 T
 is the same as minimising wVw ..T

, our problem can be 

rewritten as: 

 

Minimise wVw ...
2

1 T
 subject to 0. p

T ew  and 01.T 1w  

 

Using Lagrangian multipliers we set our objective function as: 

 

L(w, 1 , 2 ) = wVw ...
2

1 T
 - 1  .( p

T . ew ) - 2 ( 1.T 1w ) 

 

 

Taking first partial derivatives: 

 

 0.
L

p

T

1





ew  ........................................................................................................................................................ (1) 

 

 01.
L T

2





1w  ........................................................................................................................................................... (2) 

 

 0.
L

21 



1ewV

w
 .......................................................................................................................................... (3) 

 

Simplifying equation (3): 

 

 1ewV 21.   

 

ie. 1VeVwVV .... 1

2

1

1

1    

 

ie.  1VeVw .. 1

2

1

1

   .................................................................................................................................................(3’) 

 

ie.  
T1

2

T1

1

T ).().( 1VeVw    

 

ie.  
1T

2

1T

1

T ..   V1Vew  .......................................................................................................................................... (4) 

 

Substituting equation (4) into equation (1): 

 

   0... p

1T

2

1T

1   eV1Ve  

 

ie.  p

1T

2

1T

1 ....   eV1eVe .................................................................................................................................... (5) 

 

Substituting equation (4) into equation (2): 
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   01... 1T

2

1T

1   1V1Ve  

 

ie.  1.... 1T

2

1T

1   1V11Ve  ...................................................................................................................................... (6) 

 

Equations (5) and (6) can now be written as the linear system: 

 


































1
.

....

.... p

2

1

1T1T

1T1T

1V11Ve

eV1eVe
 

 

Notice that eVe .. 1T 
, eV1 .. 1T 

, 1Ve .. 1T 
 and 1V1 .. 1T 

 are all 1 x 1, ie. they are scalars.  Hence, if we 

let: 

 

B = e
T
V

-1
e 

 

A = 1
T
V

-1
e = e

T
V

-1
1  

 

C = 1
T
V

-1
1  

 

Then our linear system becomes: 

 































1
.

CA

AB p

2

1
 

 

Hence we need to solve: 

 
































1
.

CA

AB p

1

2

1
 

 

Which requires knowledge of the inverted matrix. 

 

































CA

AB
Adj.

Determ

1

CA

AB
1

 

 

But the Determinant = BC – A
2
 and 



































BA

AC

CA

AB
Adj  so letting Determ = D = BC – A

2
 gives: 

 



































1
.

BA

AC
.

D

1 p

2

1
 

 

ie. 
D

A.C p

1


  and 

D

B.A p

2


  

 

If we substitute these values back in to equation (3’) we get: 

 

1VeVw ..
D

B.A
..

D

A.C
1p1p 








 








 
  

 

    1VeV ..B.A..A.C.
D

1 1

p

1

p
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    1V1VeVeV ..B...A..A...C.
D

1 11

p

11

p

   

 

 1V1VeVeV ..B...A..A...C.
D

1 11

p

11

p

   

 

 1VeVeV1V ...A...C..A..B.
D

1 1

p

1

p

11    

 

ie.    p

1111 ...A..C..A..B.
D

1
  1VeVeV1Vw  .................................................................................... (7) 

 

Hence, we have w in terms of p  ie. w = f( p ).  To get 
2

p  in terms of p  ie.
2

p = f( p ), we substitute 

equation (7) into the portfolio variance equation: 

 

wVw ..T2

p   

 

  p

1111T ..A..C..A..B.
D

1
..   1VeVeV1VVw  

 

and remembering that A, B, C and D are all scalars: 

 

  p

1111T ...A...C...A...B.
D

1
.   1VVeVVeVV1VVw  

 

  p

T .A.C.A.B.
D

1
.  1ee1w  

 

now, grouping by like (vector) terms: 

 

    ee11w .A..C..A.B.
D

1
. pp

T   

 

    e1w .A.C..AB.
D

1
. pp

T   

 

ie.      e1w .A.C..AB.
D

1
. pp

T2

p   ............................................................................................................... (8) 

 

If we transpose equation (7) we get: 

 

  Tp

1111T ...A..C..A..B.
D

1
  1VeVeV1Vw  

 

  Tp

1

p

111 ...A...C..A..B.
D

1
  1VeVeV1V  

 

        T

p

1T

p

1T1T1 ...A...C..A..B.
D

1
  1VeVeV1V  
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        p

T1T

p

T1TT1TT1T ...A...C..A..B.
D

1
  V1VeVeV1  

 

and since V
-1

 is symmetric: 

 

 p

1T

p

1T1T1T ...A...C..A..B.
D

1
  V1VeVeV1  

 

grouping by like (matrix) terms: 

 

    1T

p

1T

p

1T1T ..A...C...A..B.
D

1   VeVeV1V1  

 

ie.      1T

p

1T

p

T ..A.C...AB.
D

1   VeV1w  

 

Using this transpose in equation (8) gives: 

 

         e1VeV1 .A.C..AB.
D

1
...A.C...AB.

D

1
pp

1T

p

1T

p

2

p  
 

 

         e1VeV1 .A.C..AB...A.C...AB.
D

1
pp

1T

p

1T

p2
 

 

 

    
     























eVe1Ve

eV11V1

...A.C...A.C..AB         

...A.C..AB....AB
.

D

1
1T2

p

1T

pp

1T

pp

1T2

p

2
 

 

     
  























eVe

1VeeV11V1

...A.C          

.....A.C..AB....AB
.

D

1
1T2

p

1T1T

pp

1T2

p

2
 

 

but we remember that: 

 

1
T
V

-1
1 = C 

 

1
T
V

-1
e = e

T
V

-1
1 = A 

 

e
T
V

-1
e = B 

 

so, 

 

       B.A.CA.2.A.C..ABC..AB.
D

1 2

ppp

2

p2

2

p   

 

         B.A.C.A.CA.2.A.C..ABC..AB..AB.
D

1
pppppp2
  

 

   
  



















B.A.C.A.2.C          

A.2..A.C.AB.A.C.BC..A.B.A.2B
.

D

1
2

p

2

p

2

p

22

pp

2

p

2

p

2

2
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B.A.C.AB.2.C.B          

.A.2.C.A.2B.A.2.C.B.A.2.C.A.C.B.A.2C.B
.

D

1
2

p

2

p

2

p

32

p

22

p

2

p

2

p

2

2
 

 




















B.A.C.AB.2.C.B.A.2.C.A.2          

B.A.2.C.B.A.2.C.A.C.B.A.2C.B
.

D

1
2

p

2

p

2

p

32

p

2

2

p

2

p

2

p

2

2
 

 

   
  



















2

p

22

p

22

p

2

p

3

ppp

222

2
.C.B.C.A.2.C.A          

.A.2.C.AB.2.C.B.A.2.C.B.A.2B.AB.A.2C.B
.

D

1
 

 

      2

p

22

p

2

p

3

p

22

2
.C.B.C.A.A.2.C.AB.2B.AC.B.

D

1
  

 

      2

p

22

p

2

p

3

p

22

2
.C.A.C.B.A.2.C.AB.2B.AC.B.

D

1
  

 

      2

p

2

p

22

2
.C.AC.B.A.2.AC.BB.AC.B.

D

1
  

 

but DAC.B 2   so: 

 

 2

pp2

2

p .C.D.A.2.DB.D.
D

1
  

 

 2

pp2
.C.A.2B.D.

D

1
  

 

 2

pp .C.A.2B.
D

1
  

 







 2

pp.
C

A
.2

C

B
.

D

C
 

 









C

B
.

C

A
.2.

D

C
p

2

p  

 































22

p

2

p
C

A

C

A

C

B
.

C

A
.2.

D

C
 

 































22

p

2

p
C

A

C

B

C

A
.

C

A
.2.

D

C
 

 































22

p
C

A

C

B

C

A
.

D

C
 

 























2

22

p
C

A

C

B

C

A
.

D

C
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2

2

2

2

p
C

A

C

BC

C

A
.

D

C
 

 











 











2

22

p
C

ABC

C

A
.

D

C
 

 























2

2

p
C

D

C

A
.

D

C
 

 

C

1

C

A
.

D

C
2

p 







  

 

ie.  
C

1

C

A
.

D

C
2

p

2

p 







  ................................................................................................................................................... (9) 

 

Hence, we have 
2

p  in terms of p  ie.
2

p = f( p ). 

 

To get p  in terms of 
2

p  we simply re-arrange equation (9): 

 
2

p

2

p
C

A
.

D

C

C

1








  

 
2

p

2

p
C

A

C

1
.

C

D

















  

 

C

A

C

1
.

C

D
p

2

p 







  

 

p

2

p
C

1
.

C

D

C

A









  

 











C

1
.

C

D

C

A 2

pp  

 

which is p  in terms of 
2

p . 
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Appendix B 

Active Analysis 
 

The previous analysis required the constraint: 

 

 1.T 1w  

 

which, for an active analysis, should be: 

 

 0.T 1w  

 

Therefore, to find the optimal portfolio we want to: 

 

 Minimise 
2

p  subject to p

T . ew  and 0.T 1w  

 

ie. Minimise wVw ...
2

1 T
 subject to 0. p

T ew  and 0.T 1w  

 

Our Lagrange objective function then becomes: 

 

L(w, 1 , 2 ) = wVw ...
2

1 T
 - 1  .( p

T . ew ) - 2 ( 1w .T
) 

 

Taking first partial derivatives: 

 

 0.
L

p

T

1





ew  .................................................................................................................................................... (B.1) 

 

 0.
L T

2





1w  ............................................................................................................................................................... (B.2) 

 

 0.
L

21 



1ewV

w
 ...................................................................................................................................... (B.3) 

 

Simplifying equation (B.3): 

 

 1ewV 21.   

 

ie. 1VeVwVV .... 1

2

1

1

1    

 

ie.  1VeVw .. 1

2

1

1

   ............................................................................................................................................. (B.3’) 

 

ie.  
T1

2

T1

1

T ).().( 1VeVw    

 

ie.  
1T

2

1T

1

T ..   V1Vew  ...................................................................................................................................... (B.4) 

 

Substituting equation (B.4) into equation (B.1): 

 

   0... p

1T

2

1T

1   eV1Ve  
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ie.  p

1T

2

1T

1 ....   eV1eVe ................................................................................................................................ (B.5) 

 

Substituting equation (B.4) into equation (B.2): 

 

   0... 1T

2

1T

1   1V1Ve  

 

ie.  0.... 1T

2

1T

1   1V11Ve  .................................................................................................................................. (B.6) 

 

Equations (B.5) and (B.6) can now be written as the linear system: 

 


































0
.

....

.... p

2

1

1T1T

1T1T

1V11Ve

eV1eVe
 

 

Notice that eVe .. 1T 
, eV1 .. 1T 

, 1Ve .. 1T 
 and 1V1 .. 1T 

 are all 1 x 1, ie. they are scalars.  Hence, if we 

let: 

 

B = e
T
V

-1
e 

 

A = 1
T
V

-1
e = e

T
V

-1
1  

 

C = 1
T
V

-1
1  

 

Our linear system becomes: 

 































0
.

CA

AB p

2

1
 

 

where, as before: 

 

A = 1
T
V

-1
e = e

T
V

-1
1  

 

B = e
T
V

-1
e 

 

C = 1
T
V

-1
1  

 

Hence we need to solve: 

 
































0
.

CA

AB p

1

2

1
 

 

Which, again, requires knowledge of the inverted matrix and leads to the equation: 

 



































0
.

BA

AC
.

D

1 p

2

1
 

 

ie. 
D

.C p

1


  and 

D

.A p

2


  

 

Substituting these values back in to equation (B.3’) we get: 
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1VeVw ..
D

.A
..

D

.C
1p1p 








 








 
  

 

ie.   1VeVw ..A..C.
D

11p  


  ..................................................................................................................................... (B.7) 

 

Hence, we have w in terms of p  ie. w = f( p ).  To get 
2

p  in terms of p  ie.
2

p = f( p ), we substitute 

equation (B.7) into the portfolio variance equation: 

 

wVw ..T2

p   

 

 










  1VeVVw ..A..C.

D
.. 11pT

 

 

  1VVeVVw ...A...C..
D

11Tp  


  

 

 1ew .A.C..
D

Tp



  

 

If we transpose equation (B.7) and substitute it in, we get: 

 

    1e1VeV .A.C...A..C.
D

.
D

T

11pp












 

 

 

  1eV1Ve .A.C...A..C.
D

1T1T

2

2

p



 

 

 

  1V1eV11VeeVe ...A...C.A...C.A...C.
D

1T21T1T1T2

2

2

p  


  

 

  C.AA.C.AA.C.AB.C.
D

22

2

2

p



  

 

 C.AB.C.
D

22

2

2

p



  

 

 C.AC.B.
D

2

2

2

p



  

 

C.
D

2

p
  

 

ie. 
2

p

2

p .
D

C
  OR pp .

C

D
  

 

 


