

Root Estimation using

Newton-Raphson

by

Hammond Mason

ROOT ESTIMATION USING NEWTON-RAPHSON

Page 2

1. Univariate Case

Consider the Taylor Series of a function, , of one variable, :

As an approximation:

We can use this relation to find the value of such that ie. the value will be close to

the ‘root’ of .

If then:

So, we can use this value of to find , ie:

This new value of (:

gives rise to a new value of ():

ROOT ESTIMATION USING NEWTON-RAPHSON

Page 3

which will be closer to 0 than was. Of course if the value of is not as close to 0 as we would like, we

can just set the value of to be and perform the process again, ie.:

where

We can keep on iterating like this until our value for is “close enough” to 0, ie. within our desired

tolerance. This is the essence of the Newton-Raphson algorithm for finding the root of a function.

In applying Newton-Raphson there is one practical problem: determining . Quite often the functional

form of is not known, eg. could simply be the value in a cell of a complex spreadsheet. Not knowing

the equation for means not being able to determine . In such a situation, however, can be

approximated using the difference operator:

The smaller is, the closer the difference operator will come to the true value for .

The Newton-Raphson algorithm, therefore, can be stated as:

1. Start with an initial value for , being a guess as to what the root of the function is;

2. Set ;

3. Calculate ;

4. Compare with 0 to see how far away from 0 we are;

5. If is close enough to 0 then stop – we have found that is close enough to the real root of .

6. If is not close enough to 0 then calculate . This requires two separate calculations: one to

calculate and the other to calculate ;

7. Calculate from the values of , and we have just determined above, using the

formula specified above;

8. Set ;

9. Go to step 3 with this new value of .

2. Multivariate Case

The above univariate case can be extended to the multivariate case quite simply. Consider the two variable

case: . Again, we start with the Taylor Series expansion of , but this time with two variables, and

:

Again, as an approximation:

ROOT ESTIMATION USING NEWTON-RAPHSON

Page 4

If then:

In matrix notation:

The problem here, of course, is that we have one equation but two unknowns resulting in an infinite number

of solutions. Therefore, in order to have a unique solution we require two equations, ie. two different

functions which both depend on and . If this is the case then we have the equations:

which simplifies to:

or

where is the vector of , is the Jacobian matrix and is the vector of s. Rearranging for gives:

and the resulting vector from

provides our estimates of which we can use to generate which can then be tested to see if each

 is close enough to the target value to make our estimate of the root of .

The problem with multivariate Newton-Raphson is that the more variates there are, the more calculations

need to be done. When we had one variate, we needed to calculate the estimate of which involved 2

ROOT ESTIMATION USING NEWTON-RAPHSON

Page 5

calculations: and . With the bivariate case presented above we now have to calculate 4 partial

derivatives, with each partial derivative requiring 2 calculations, ie. a total of 8 calculations to get . A

trivariate case has 9 partial derivatives in its Jacobian matrix, ie. 18 calculations for . Generalizing we see that

for the n-variate case, the calculation of requires 2n
2
 separate calculations to be done. And this is before

we even start to invert . Consequently, while Newton-Raphson lends itself well to the multivariate case, in its

application we must be mindful of the computational effort required.

