

1

Newton-Raphson Approximation with Applications

by Hammond Mason

Consider the above function f(x). The point at which f(x) intersects the x-axis is the value of x for which the

function is zero. This x value is called the root of f(x). In the situation where f(x) represents the NPV of a set

of cash flows discounted at a rate equal to x, the root of f(x) is commonly known as the Internal Rate of

Return (IRR). The root may be determined exactly if the equation for f(x) is known and is not of a very high

order, eg. quadratic or cubic. When the equation is unknown – as is often the case in finance – the root can

be approximated using the Newton-Raphson algorithm.

The Newton-Raphson Algorithm

Knowing the equation for f(x) we find its first derivative f′(x) at a point estimated to be at or near the root. In

our example above, the ‘best guess’ value we chose was x1. Knowing that f1′(x1) is equal to the gradient of

the line tangential to f(x) at x1 we can easily find point x2 using the equation:

12

12
1

12

12
1

)()(
)('

)('

)('

xx

xfxf
xf

xx

yy
xf

x

y
xf

run

rise
gradient

Knowing that f(x2) = 0 we can rearrange the above to:

)('

)(

1

1
12

xf

xf
xx

x

y

f(x)

f1′(x)

x2 x1 x3

Root [f(x)=0]

0

f2′(x)

f3′(x)

Newton-Raphson Approximation

2

And solve for x2. We then repeat the process using x2 in order to find x3. And so on. Using this iterative

method, we very quickly come close to finding the root of f(x). We come close to the root but never actually

reach it. Our approximation will always need to come within a degree of error as specified by the user – eg.

the number of decimal places, significant figures, etc.

Solving Numerically Using the Newton-Raphson Algorithm

If the equation for f(x) is not known, an alternative method is to estimate the derivative numerically using the

formula:

h

xfhxf

h
xf

)()(

0

lim
)('

Choosing a sufficiently small enough value for h allows the user to estimate f’(x) and, therefore, f1’(x1), f2’(x2)

and f3’(x3) can all be determined thereby solving the problem of differentiating f(x) algebraically.

The following example, which has a root of 12.19%, illustrates the approach:

-4

-2

-

2

4

6

8

10

-5% 0% 5% 10% 15% 20% 25%

Some of the values for the above function (which are needed for the ensuing calculations) are contained in

the following table:

x f(x)

0.10000 1.18713

0.10001 1.18654

0.12012 0.08987

0.12013 0.08936

0.12188 0.00051

0.12189 0.00001

Newton-Raphson Approximation

3

Starting with a guess of 10% the resulting NPV is 1.18713 ie. the [x, y] point on the curve f(x) is [0.1, 1.18713].

If we assume h = 0.00001 then our estimate for f1’(x1) is:

00.59

00001.0

18713.118654.1

00001.0

)1.0()00001.01.0(

)()(11

ff

h

xfhxf

We now need to determine the data point [x2, 0]:

12012.0

00.59

18713.1
1.0

)('

)(

2

2

1

1
12

x

x

xf

xf
xx

Using this value, f(x2) is 0.08987, ie. the point on the curve is [0.12012, 0.08987]. Our estimate for f2’(x2) is:

00.51

00001.0

08987.008936.0

00001.0

)12012.0()00001.012012.0(

)()(22

ff

h

xfhxf

Hence, x3 is:

12188.0

00.51

08987.0
12012.0

)('

)(

3

3

2

2
23

x

x

xf

xf
xx

Again, f(0.12188) is 0.00051 so f3’(0.12188) is:

00.50

00001.0

00051.000001.0

00001.0

)12188.0()00001.012188.0(

)()(33

ff

h

xfhxf

And x4 is:

Newton-Raphson Approximation

4

12189.0

00.50

00051.0
12188.0

)('

)(

4

4

3

3
34

x

x

xf

xf
xx

Which is only a 0.00001 change from the previous iteration, ie. we are now accurate to 4 decimal places. All

this in only 4 iterations! In fact, if we had chosen our beginning value (x1) as 0 instead of 0.1, the number of

iterations required to achieve the same accuracy would have been only 6. If we had chosen x1 =1 instead of

0.1, the number of iterations would have been 7.

The above iterative process can be modelled within a spreadsheet such as Microsoft Excel or OpenOffice Calc

using data tables referencing the cell containing the NPV value. However, care should be taken to ensure the

data tables are accurate by repeatedly recalculating (pressing the F9 key in Excel) until there is no visible

change. A better solution is to codify the above algorithm (eg. using Excel’s VBA) thus avoiding the F9-

update problem.

To simplify, the algorithm to be coded is:

Let g = guess and let counter = 0

Loop while c is less than the desired maximum number of iterations, eg. loop while c < 10

 Let x = g – f(g) / f’(g)

 If the absolute value of f(x) is less than the required accuracy, then exit the loop

 Let g take on x’s value in readiness for the next cycle of the loop

Increment counter by 1

 Return to start of the loop for the next iteration

Example code for three applications of the Newton-Raphson algorithm follow.

Newton-Raphson Approximation

5

Application 1: Internal Rate Of Return

The following Excel VBA code illustrates Newton-Raphson using Excel’s built-in NPV function to find the IRR:

'// Make function visible to whole project

Public Function InternalRateOfReturn(_

ByRef rngCashflows As Range, _

ByRef dblGuess As Double) As Double

'// Declare local variables

Dim intCount As Integer

Dim dblPrecision As Double

Dim dblNextGuess As Double

Dim dblFunction As Double

Dim dblH As Double

Dim dblFunctionH As Double

Dim dblFunctionDeriv As Double

'// Initialise variables

intCount = 0

dblPrecision = 0.00001

dblH = 0.0000000001

dblNextGuess = dblGuess

'// Perform Newton-Raphson algorithm

Do While intCount < 10

 dblFunction = Application.WorksheetFunction.NPV(dblNextGuess, rngCashflows)

 If Abs(dblFunction) < dblPrecision Then

 Exit Do

 End If

 dblFunctionH = Application.WorksheetFunction.NPV(dblNextGuess + dblH, rngCashflows)

 dblFunctionDeriv = (dblFunctionH - dblFunction) / dblH

 dblNextGuess = dblNextGuess - dblFunction / dblFunctionDeriv

 intCount = intCount + 1

Loop

'// Return value

InternalRateOfReturn = dblNextGuess

End Function

Newton-Raphson Approximation

6

Application 2: Implied Volatility

The following code uses the Newton-Raphson algorithm to find the volatility implied (“ImpliedVolatility”) by

the Black-Scholes option pricing model (“BlackScholes”) from an observed option price:

Public Function ImpliedVolatility(_

ByRef dblPrice As Double, _

ByRef dteValue As Date, _

ByRef dblSpot As Double, _

ByRef dblStrike As Double, _

ByRef dteExpiry As Date, _

ByRef dblRate As Double, _

ByRef strType As String) As Double

'// Declare local variables

Dim intCount As Integer

Dim dblAccuracy As Double

Dim dblNextGuess As Double

Dim dblFunction As Double

Dim dblH As Double

Dim dblFunctionH As Double

Dim dblFirstDerivative As Double

'// Initialise variables

intCount = 0

dblAccuracy = 0.00001

dblH = 0.0000000001

dblNextGuess = 0.2

'// Newton-Raphson Algorithm

Do While intCount < 10

 dblFunction = GetDiff("Premium", dteValue, dblSpot, dblStrike, dblNextGuess, dteExpiry, dblRate, strType, dblPrice)

 If Abs(dblFunction) < dblAccuracy Then Exit Do

 dblFunctionH = GetDiff("Premium", dteValue, dblSpot, dblStrike, dblNextGuess + dblH, dteExpiry, dblRate, strType, dblPrice)

 dblFirstDerivative = (dblFunctionH - dblFunction) / dblH

 dblNextGuess = dblNextGuess - dblFunction / dblFirstDerivative

 intCount = intCount + 1

Loop

'// Return value

ImpliedVolatility = dblNextGuess

End Function

Public Function GetDiff(_

ByRef strCalc As String, _

ByRef dteValue As Date, _

ByRef dblSpot As Double, _

ByRef dblStrike As Double, _

ByRef dblVol As Double, _

ByRef dteExpiry As Date, _

ByRef dblRate As Double, _

ByRef strType As String, _

ByRef dblPrice As Double) As Double

'// Declare variables

Dim dblCalculatedPremium As Double

Dim dblObservedPrice As Double

Dim dblDifference As Double

'// Calculate difference between the theoretical (calculated) option premium and the actual (observed) price

dblCalculatedPremium = BlackScholes(strCalc, dteValue, dblSpot, dblStrike, dblVol, dteExpiry, dblRate, strType)

dblObservedPrice = dblPrice

dblDifference = dblCalculatedPremium - dblObservedPrice

'// Return value

GetDiff = dblDifference

End Function

Newton-Raphson Approximation

7

Public Function BlackScholes(_

ByRef strCalc As String, _

ByRef dteValue As Date, _

ByRef dblSpot As Double, _

ByRef dblStrike As Double, _

ByRef dblVol As Double, _

ByRef dteExpiry As Date, _

ByRef dblRate As Double, _

ByRef strType As String) As Double

'// Initialise variables

Dim dblTerm As Double

Dim dblD1 As Double

Dim dblD2 As Double

Dim dblN1 As Double

Dim dblN2 As Double

Dim dblPremium As Double

Dim dblDelta As Double

Dim dblGamma As Double

Dim dblVega As Double

Dim dblTheta As Double

Dim dblRho As Double

Dim dblPDF As Double

Dim dblThetaCommon As Double

Dim dblRhoCommon As Double

'// Calculate re-useable variables

dblTerm = (dteExpiry - dteValue) / 365

dblD1 = (Log(dblSpot / dblStrike) + (dblRate + 0.5 * dblVol ^ 2) * dblTerm) / (dblVol * Sqr(dblTerm))

dblD2 = dblD1 - dblVol * Sqr(dblTerm)

dblN1 = Application.WorksheetFunction.NormSDist(dblD1)

dblN2 = Application.WorksheetFunction.NormSDist(dblD2)

dblPDF = Exp(-0.5 * dblD1 ^ 2) / Sqr(2 * Application.WorksheetFunction.Pi)

dblGamma = dblPDF / (dblSpot * dblVol * Sqr(dblTerm))

dblVega = dblPDF * dblSpot * Sqr(dblTerm)

dblThetaCommon = dblSpot * dblPDF * dblVol / (2 * Sqr(dblTerm))

dblRhoCommon = dblStrike * Exp(-dblRate * dblTerm) * dblTerm

'// Calculate Price (Premium) and the Greeks

Select Case strType

 Case "Call"

 dblPremium = dblSpot * dblN1 - dblStrike * Exp(-dblRate * dblTerm) * dblN2

 dblDelta = dblN1

 dblTheta = dblThetaCommon + dblStrike * Exp(-dblRate * dblTerm) * dblRate * (dblN2)

 dblRho = dblRhoCommon * (dblN2)

 Case "Put"

 dblPremium = -dblSpot * (1 - dblN1) + dblStrike * Exp(-dblRate * dblTerm) * (1 - dblN2)

 dblDelta = dblN1 - 1

 dblTheta = dblThetaCommon + dblStrike * Exp(-dblRate * dblTerm) * dblRate * (dblN2 - 1)

 dblRho = dblRhoCommon * (dblN2 - 1)

End Select

'// Return value

Select Case strCalc

 Case "Premium"

 BlackScholes = dblPremium

 Case "Delta"

 BlackScholes = dblDelta

 Case "Gamma"

 BlackScholes = dblGamma

 Case "Vega"

 BlackScholes = dblVega

 Case "Theta"

 BlackScholes = dblTheta

 Case "Rho"

 BlackScholes = dblRho

End Select

End Function

Newton-Raphson Approximation

8

Application 3: Fixed Rate of an Interest Rate Swap

Given a set of dates, discount factors, a notional profile and the floating leg margin for an interest rate swap,

the Newton-Raphson algorithm can be used to determine the implied fixed rate:

'// Make the function visible to the whole project

Public Function SwapRate(_

ByRef rngDates As Range, _

ByRef rngDFs As Range, _

ByRef rngNotional As Range, _

ByRef dblMargin) As Double

'// Declare variables

Dim intCount As Integer

Dim dblAccuracy As Double

Dim dblH As Double

Dim dblNextGuess As Double

Dim dblFunction As Double

Dim dblFunctionH As Double

Dim dblFirstDerivative As Double

'// Initialise variables

intCount = 0

dblAccuracy = 0.00001

dblH = 0.0000000001

dblNextGuess = 0.05

'// Newton-Raphson Algorithm

Do While intCount < 10

 dblFunction = GetNpvOfSwap(rngDates, rngDFs, rngNotional, dblNextGuess, dblMargin)

 If Abs(dblFunction) < dblAccuracy Then Exit Do

 dblFunctionH = GetNpvOfSwap(rngDates, rngDFs, rngNotional, dblNextGuess + dblH, dblMargin)

 dblFirstDerivative = (dblFunctionH - dblFunction) / dblH

 dblNextGuess = dblNextGuess - dblFunction / dblFirstDerivative

 intCount = intCount + 1

Loop

'// Return value

SwapRate = dblNextGuess

End Function

Private Function GetNpvOfSwap(_

ByRef rngDates As Range, _

ByRef rngDFs As Range, _

ByRef rngNotional As Range, _

ByRef dblFixedRate As Double, _

ByRef dblMargin) As Double

'// Declare variables

Dim dblPvOfFixedLeg As Double

Dim dblPvOfFloatingLeg As Double

Dim dblNpvOfSwap As Double

'// Calculate PV of legs and NPV of swap

dblPvOfFixedLeg = GetPvOfFixedLeg(rngDates, rngDFs, rngNotional, dblFixedRate)

dblPvOfFloatingLeg = GetPvOfFloatingLeg(rngDates, rngDFs, rngNotional, dblMargin)

dblNpvOfSwap = dblPvOfFixedLeg - dblPvOfFloatingLeg

'// Return value

GetNpvOfSwap = dblNpvOfSwap

End Function

Private Function GetPvOfFixedLeg(_

ByRef rngDates As Range, _

ByRef rngDFs As Range, _

ByRef rngNotional As Range, _

ByRef dblFixedRate As Double) As Double

Newton-Raphson Approximation

9

'// Declare variables

Dim lngLoop As Long

Dim dblFixedInterest As Double

Dim dblPvOfFixedInterest As Double

'// Initialise variables

lngLoop = 0

dblFixedInterest = 0

dblPvOfFixedInterest = 0

'// Loop through each date but one

For lngLoop = 2 To rngDates.Cells.Count

 dblFixedInterest = rngNotional.Cells(lngLoop - 1) * dblFixedRate * (rngDates.Cells(lngLoop) - rngDates.Cells(lngLoop - 1)) / 365

 dblPvOfFixedInterest = dblPvOfFixedInterest + dblFixedInterest * rngDFs.Cells(lngLoop)

Next lngLoop

'// Return the value

GetPvOfFixedLeg = dblPvOfFixedInterest

End Function

Private Function GetPvOfFloatingLeg(_

ByRef rngDates As Range, _

ByRef rngDFs As Range, _

ByRef rngNotional As Range, _

ByRef dblMargin) As Double

'// Declare variables

Dim lngLoop As Long

Dim dblNumDaysInRoll As Double

Dim dblYearFraction As Double

Dim dblFloatingRate As Double

Dim dblFloatingInterest As Double

Dim dblPvOfFloatingInterest As Double

'// Initialise variables

lngLoop = 0

dblNumDaysInRoll = 0

dblYearFraction = 0

dblFloatingInterest = 0

dblPvOfFloatingInterest = 0

'// Loop through each date but one

For lngLoop = 2 To rngDates.Cells.Count

 dblNumDaysInRoll = rngDates.Cells(lngLoop) - rngDates.Cells(lngLoop - 1)

 dblYearFraction = dblNumDaysInRoll / 365

 dblFloatingRate = (rngDFs.Cells(lngLoop - 1) / rngDFs.Cells(lngLoop) - 1) / dblYearFraction + dblMargin

 dblFloatingInterest = rngNotional.Cells(lngLoop - 1) * dblFloatingRate * dblYearFraction

 dblPvOfFloatingInterest = dblPvOfFloatingInterest + dblFloatingInterest * rngDFs.Cells(lngLoop)

Next lngLoop

'// Return the value

GetPvOfFloatingLeg = dblPvOfFloatingInterest

End Function

Newton-Raphson Approximation

10

Application 4: Floating Rate Margin of an Interest Rate Swap

Given a set of dates, discount factors, notional profile and the fixed rate for a swap, the Newton-Raphson

algorithm can be used to determine the margin on the floating leg of the swap:

'// Make the function visible to the whole project

Public Function SwapMargin(_

ByRef rngDates As Range, _

ByRef rngDFs As Range, _

ByRef rngNotional As Range, _

ByRef dblFixedRate As Double) As Double

'// Declare variables

Dim intCount As Integer

Dim dblAccuracy As Double

Dim dblH As Double

Dim dblNextGuess As Double

Dim dblFunction As Double

Dim dblFunctionH As Double

Dim dblFirstDerivative As Double

'// Initialise variables

intCount = 0

dblAccuracy = 0.00001

dblH = 0.0000000001

dblNextGuess = 0.005

'// Newton-Raphson Algorithm

Do While intCount < 10

 dblFunction = GetNpvOfSwap(rngDates, rngDFs, rngNotional, dblFixedRate, dblNextGuess)

 If Abs(dblFunction) < dblAccuracy Then Exit Do

 dblFunctionH = GetNpvOfSwap(rngDates, rngDFs, rngNotional, dblFixedRate, dblNextGuess + dblH)

 dblFirstDerivative = (dblFunctionH - dblFunction) / dblH

 dblNextGuess = dblNextGuess - dblFunction / dblFirstDerivative

 intCount = intCount + 1

Loop

'// Return value

SwapMargin = dblNextGuess

End Function

NB: the above Floating Rate Margin code requires access to the private functions specified in the previous

Fixed Rate code.

