## Newton-Raphson Approximation with Applications

## by Hammond Mason



Consider the above function $f(x)$. The point at which $f(x)$ intersects the $x$-axis is the value of $x$ for which the function is zero. This $x$ value is called the root of $f(x)$. In the situation where $f(x)$ represents the NPV of a set of cash flows discounted at a rate equal to $x$, the root $f(x)$ is commonly known as the Internal Rate of Return (IRR). The root may be determined exactly if the equation for $f(x)$ is known and is not of a very high order, eg. quadratic or cubic. When the equation is unknown - as is often the case in finance - the root can be approximated using the Newton-Raphson algorithm.

## The Newton-Raphson Algorithm

Knowing the equation for $f(x)$ we find its first derivative $f^{\prime}(x)$ at a point estimated to be at or near the root. In our example above, the 'best guess' value we chose was $x_{1}$. Knowing that $f_{1}{ }^{\prime}\left(x_{1}\right)$ is equal to the gradient of the line tangential to $f(x)$ at $x_{1}$ we can easily find point $x_{2}$ using the equation:

$$
\begin{aligned}
& \text { gradient }=\frac{\text { rise }}{\text { run }} \\
& \therefore f^{\prime}(x)=\frac{\Delta y}{\Delta x} \\
& \therefore f^{\prime}\left(x_{1}\right)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& \therefore f^{\prime}\left(x_{1}\right)=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
\end{aligned}
$$

Knowing that $f\left(x_{2}\right)=0$ we can rearrange the above to:

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
$$

And solve for $x_{2}$. We then repeat the process using $x_{2}$ in order to find $x_{3}$. And so on. Using this iterative method, we very quickly come close to finding the root of $f(x)$. We come close to the root but never actually reach it. Our approximation will always need to come within a degree of error as specified by the user - eg. the number of decimal places, significant figures, etc.

## Solving Numerically Using the Newton-Raphson Algorithm

If the equation for $f(x)$ is not known, an alternative method is to estimate the derivative numerically using the formula:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Choosing a sufficiently small enough value for $h$ allows the user to estimate $f^{\prime}(x)$ and, therefore, $f_{1}{ }^{\prime}\left(x_{1}\right), f_{2}{ }^{\prime}\left(x_{2}\right)$ and $f_{3}{ }^{\prime}\left(x_{3}\right)$ can all be determined thereby solving the problem of differentiating $f(x)$ algebraically.

The following example, which has a root of $12.19 \%$, illustrates the approach:


Some of the values for the above function (which are needed for the ensuing calculations) are contained in the following table:

| $x$ | $f(x)$ |
| :---: | :---: |
| 0.10000 | 1.18713 |
| 0.10001 | 1.18654 |
| 0.12012 | 0.08987 |
| 0.12013 | 0.08936 |
| 0.12188 | 0.00051 |
| 0.12189 | 0.00001 |

Starting with a guess of $10 \%$ the resulting NPV is 1.18713 ie. the $[x, y]$ point on the curve $f(x)$ is [0.1, 1.18713]. If we assume $h=0.00001$ then our estimate for $f_{1}{ }^{\prime}\left(x_{1}\right)$ is:

$$
\begin{aligned}
& \frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h} \\
& =\frac{f(0.1+0.00001)-f(0.1)}{0.00001} \\
& =\frac{1.18654-1.18713}{0.00001} \\
& =-59.00
\end{aligned}
$$

We now need to determine the data point $\left[x_{2}, 0\right]$ :

$$
\begin{aligned}
& x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
& \therefore x_{2}=0.1-\frac{1.18713}{-59.00} \\
& \therefore x_{2}=0.12012
\end{aligned}
$$

Using this value, $f\left(x_{2}\right)$ is 0.08987 , ie. the point on the curve is [0.12012, 0.08987$]$. Our estimate for $f_{2}{ }^{\prime}\left(x_{2}\right)$ is:

$$
\begin{aligned}
& \frac{f\left(x_{2}+h\right)-f\left(x_{2}\right)}{h} \\
& =\frac{f(0.12012+0.00001)-f(0.12012)}{0.00001} \\
& =\frac{0.08936-0.08987}{0.00001} \\
& =-51.00
\end{aligned}
$$

Hence, $x_{3}$ is:

$$
\begin{aligned}
& x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)} \\
& \therefore x_{3}=0.12012-\frac{0.08987}{-51.00} \\
& \therefore x_{3}=0.12188
\end{aligned}
$$

Again, $f(0.12188)$ is 0.00051 so $f_{3}{ }^{\prime}(0.12188)$ is:

$$
\begin{aligned}
& \frac{f\left(x_{3}+h\right)-f\left(x_{3}\right)}{h} \\
& =\frac{f(0.12188+0.00001)-f(0.12188)}{0.00001} \\
& =\frac{0.00001-0.00051}{0.00001} \\
& =-50.00
\end{aligned}
$$

And $x_{4}$ is:

$$
\begin{aligned}
& x_{4}=x_{3}-\frac{f\left(x_{3}\right)}{f^{\prime}\left(x_{3}\right)} \\
& \therefore x_{4}=0.12188-\frac{0.00051}{-50.00} \\
& \therefore x_{4}=0.12189
\end{aligned}
$$

Which is only a 0.00001 change from the previous iteration, ie. we are now accurate to 4 decimal places. All this in only 4 iterations! In fact, if we had chosen our beginning value $\left(x_{1}\right)$ as 0 instead of 0.1 , the number of iterations required to achieve the same accuracy would have been only 6 . If we had chosen $x_{1}=1$ instead of 0.1 , the number of iterations would have been 7 .

The above iterative process can be modelled within a spreadsheet such as Microsoft Excel or OpenOffice Calc using data tables referencing the cell containing the NPV value. However, care should be taken to ensure the data tables are accurate by repeatedly recalculating (pressing the F9 key in Excel) until there is no visible change. A better solution is to codify the above algorithm (eg. using Excel's VBA) thus avoiding the F9update problem.

To simplify, the algorithm to be coded is:

Let $\mathrm{g}=$ guess and let counter $=0$
Loop while c is less than the desired maximum number of iterations, eg. loop while $\mathrm{c}<10$
Let $\mathrm{x}=\mathrm{g}-\mathrm{f}(\mathrm{g}) / \mathrm{f}^{\prime}(\mathrm{g})$
If the absolute value of $f(x)$ is less than the required accuracy, then exit the loop
Let $g$ take on $x$ 's value in readiness for the next cycle of the loop
Increment counter by 1
Return to start of the loop for the next iteration

Example code for three applications of the Newton-Raphson algorithm follow.

## Application 1: Internal Rate Of Return

The following Excel VBA code illustrates Newton-Raphson using Excel's built-in NPV function to find the IRR:
'// Make function visible to whole project
Public Function InternalRateOfReturn( _
ByRef rngCashflows As Range,
ByRef dblGuess As Double) As Double
'// Declare local variables
Dim intCount As Integer
Dim dbIPrecision As Double
Dim dblNextGuess As Double
Dim dblFunction As Double
Dim dbIH As Double
Dim dblFunctionH As Double
Dim dblFunctionDeriv As Double
'// Initialise variables
intCount = 0
dbIPrecision $=0.00001$
$\mathrm{dbIH}=0.0000000001$
dblNextGuess = dblGuess
'// Perform Newton-Raphson algorithm
Do While intCount < 10
dbIFunction = Application.WorksheetFunction.NPV(dbINextGuess, rngCashflows)
If Abs(dblFunction) < dbIPrecision Then
Exit Do
End If
dblFunctionH = Application.WorksheetFunction.NPV(dblNextGuess + dbIH, rngCashflows)
dblFunctionDeriv $=($ dblFunctionH - dblFunction $) / \mathrm{dbIH}$
dblNextGuess = dbINextGuess - dblFunction / dblFunctionDeriv
intCount $=$ intCount +1
Loop
'// Return value
InternalRateOfReturn = dbINextGuess
End Function

## Application 2: Implied Volatility

The following code uses the Newton-Raphson algorithm to find the volatility implied ("ImpliedVolatility") by the Black-Scholes option pricing model ("BlackScholes") from an observed option price:

Public Function ImpliedVolatility(
ByRef dblPrice As Double,
ByRef dteValue As Date,
ByRef dbISpot As Double,
ByRef dblStrike As Double, _
ByRef dteExpiry As Date, _
ByRef dbIRate As Double,
ByRef strType As String) As Double
'// Declare local variables
Dim intCount As Integer
Dim dbIAccuracy As Double
Dim dblNextGuess As Double
Dim dblFunction As Double
Dim dblH As Double
Dim dbIFunctionH As Double
Dim dbIFirstDerivative As Double

```
'// Initialise variables
intCount = 0
dblAccuracy = 0.00001
dbIH = 0.0000000001
dbINextGuess = 0.2
'// Newton-Raphson Algorithm
Do While intCount < 10
    dblFunction = GetDiff("Premium", dteValue, dbISpot, dblStrike, dblNextGuess, dteExpiry, dbIRate, strType, dbIPrice)
    If Abs(dblFunction) < dblAccuracy Then Exit Do
    dbIFunctionH = GetDiff("Premium", dteValue, dbISpot, dblStrike, dbINextGuess + dbIH, dteExpiry, dbIRate, strType, dbIPrice)
    dblFirstDerivative = (dblFunctionH - dblFunction) / dblH
    dblNextGuess = dbINextGuess - dblFunction / dblFirstDerivative
    intCount = intCount + 1
Loop
'// Return value
ImpliedVolatility = dbINextGuess
End Function
```

Public Function GetDiff(_
ByRef strCalc As String,
ByRef dteValue As Date,
ByRef dbISpot As Double,
ByRef dblStrike As Double, _
ByRef dblVol As Double, _
ByRef dteExpiry As Date, _
ByRef dbIRate As Double,
ByRef strType As String, _
ByRef dbIPrice As Double) As Double
'// Declare variables
Dim dbICalculatedPremium As Double
Dim dblObservedPrice As Double
Dim dbIDifference As Double
'// Calculate difference between the theoretical (calculated) option premium and the actual (observed) price
dbICalculatedPremium = BlackScholes(strCalc, dteValue, dbISpot, dblStrike, dbIVol, dteExpiry, dbIRate, strType)
dbIObservedPrice = dbIPrice
dbIDifference = dblCalculatedPremium - dbIObservedPrice
'// Return value
GetDiff = dbIDifference
End Function

Public Function BlackScholes( _
ByRef strCalc As String, _
ByRef dteValue As Date,
ByRef dblSpot As Double, ByRef dblStrike As Double, _ ByRef dblVol As Double, _ ByRef dteExpiry As Date, _ ByRef dbIRate As Double, ByRef strType As String) As Double
'// Initialise variables
Dim dblTerm As Double
Dim dbID1 As Double
Dim dbID2 As Double
Dim dbIN1 As Double
Dim dbIN2 As Double
Dim dbIPremium As Double
Dim dbIDelta As Double
Dim dbIGamma As Double
Dim dblVega As Double
Dim dblTheta As Double
Dim dbIRho As Double
Dim dbIPDF As Double
Dim dbIThetaCommon As Double
Dim dbIRhoCommon As Double
'// Calculate re-useable variables
dbITerm = (dteExpiry - dteValue) / 365

dbID2 $=$ dbID1 - dbIVol * Sqr(dbITerm)
dbIN1 = Application.WorksheetFunction.NormSDist(dbID1)
dbIN2 = Application.WorksheetFunction.NormSDist(dbID2)
dbIPDF $=\operatorname{Exp}\left(-0.5^{*}\right.$ dbID1 ^ 2) $/ \operatorname{Sqr}(2$ * Application.WorksheetFunction.Pi)
dbIGamma = dbIPDF / (dbISpot * dbIVol * Sqr(dblTerm))
dbIVega $=$ dbIPDF * dbISpot * Sqr(dbITerm)
dbIThetaCommon = dblSpot * dbIPDF * dbIVol / (2 * Sqr(dbITerm))
dbIRhoCommon $=$ dbIStrike * Exp(-dbIRate * dbITerm) * dbITerm
'// Calculate Price (Premium) and the Greeks
Select Case strType
Case "Call"
dbIPremium $=$ dbISpot * dbIN1 - dbIStrike * Exp(-dbIRate * dbITerm) * dbIN2
dbIDelta = dbIN1
dbITheta $=$ dblThetaCommon + dblStrike * Exp(-dbIRate * dbITerm) * dbIRate * (dbIN2)
dbIRho = dbIRhoCommon * (dbIN2)
Case "Put"
dbIPremium $=-$ dbISpot * $(1-d b I N 1)+$ dbIStrike * Exp(-dbIRate * dbITerm) * (1-dbIN2)
$\mathrm{dbIDelta}=\mathrm{dbIN} 1-1$
dbITheta $=$ dbIThetaCommon + dbIStrike * Exp(-dbIRate * dbITerm) * dbIRate * (dblN2 -1) dbIRho $=$ dbIRhoCommon * (dbIN2-1)
End Select
'// Return value
Select Case strCalc
Case "Premium"
BlackScholes = dbIPremium
Case "Delta"
BlackScholes $=$ dbIDelta
Case "Gamma"
BlackScholes = dblGamma
Case "Vega"
BlackScholes = dbIVega
Case "Theta"
BlackScholes = dblTheta
Case "Rho"
BlackScholes $=$ dbIRho
End Select
End Function

## Application 3: Fixed Rate of an Interest Rate Swap

Given a set of dates, discount factors, a notional profile and the floating leg margin for an interest rate swap, the Newton-Raphson algorithm can be used to determine the implied fixed rate:
'// Make the function visible to the whole project
Public Function SwapRate( _
ByRef rngDates As Range, _
ByRef rngDFs As Range, _
ByRef rngNotional As Range, _
ByRef dblMargin) As Double

## '// Declare variables

Dim intCount As Integer
Dim dblAccuracy As Double
Dim dbIH As Double
Dim dblNextGuess As Double
Dim dblFunction As Double
Dim dblFunctionH As Double
Dim dbIFirstDerivative As Double
'// Initialise variables
intCount $=0$
dbIAccuracy $=0.00001$
$\mathrm{dbIH}=0.0000000001$
dbINextGuess $=0.05$
'// Newton-Raphson Algorithm
Do While intCount < 10
dblFunction $=$ GetNpvOfSwap(rngDates, rngDFs, rngNotional, dbINextGuess, dblMargin)
If Abs(dblFunction) < dblAccuracy Then Exit Do
dblFunctionH = GetNpvOfSwap(rngDates, rngDFs, rngNotional, dbINextGuess + dblH, dbIMargin)
dblFirstDerivative $=($ dblFunctionH - dblFunction $) / \mathrm{dbIH}$
dbINextGuess $=$ dbINextGuess - dbIFunction $/$ dblFirstDerivative
intCount $=$ intCount +1
Loop
'// Return value
SwapRate = dblNextGuess
End Function

Private Function GetNpvOfSwap( _
ByRef rngDates As Range, _
ByRef rngDFs As Range, _
ByRef rngNotional As Range,
ByRef dblFixedRate As Double, ByRef dblMargin) As Double
'// Declare variables
Dim dbIPvOfFixedLeg As Double
Dim dbIPvOfFloatingLeg As Double
Dim dbINpvOfSwap As Double
'// Calculate PV of legs and NPV of swap
dbIPvOfFixedLeg $=$ GetPvOfFixedLeg(rngDates, rngDFs, rngNotional, dblFixedRate)
dbIPvOfFloatingLeg = GetPvOfFloatingLeg(rngDates, rngDFs, rngNotional, dblMargin)
dbINpvOfSwap $=$ dbIPvOffixedLeg - dbIPvOfFloatingLeg
'// Return value
GetNpvOfSwap = dbINpvOfSwap
End Function

Private Function GetPvOfFixedLeg( _
ByRef rngDates As Range, _
ByRef rngDFs As Range, _
ByRef rngNotional As Range,
ByRef dblFixedRate As Double) As Double

## '// Declare variables

Dim IngLoop As Long
Dim dblFixedInterest As Double
Dim dbIPvOfFixedInterest As Double
'// Initialise variables
ngLoop = 0
dblFixedInterest = 0
dbIPvOfFixedInterest $=0$
'// Loop through each date but one
For IngLoop $=2$ To rngDates.Cells.Count
dblFixedInterest = rngNotional.Cells(lngLoop - 1) * dblFixedRate * (rngDates.Cells(lngLoop) - rngDates.Cells(lngLoop - 1)) / 365 dbIPvOfFixedInterest $=$ dbIPvOfFixedInterest + dblFixedInterest * rngDFs.Cells(IngLoop)
Next IngLoop
// Return the value
GetPvOfFixedLeg = dbIPvOfFixedInterest
End Function

## Private Function GetPvOfFloatingLeg(

ByRef rngDates As Range,
ByRef rngDFs As Range, _
ByRef rngNotional As Range, ByRef dblMargin) As Double
'// Declare variables
Dim IngLoop As Long
Dim dbINumDaysInRoll As Double
Dim dblYearFraction As Double
Dim dblFloatingRate As Double
Dim dblFloatingInterest As Double
Dim dbIPvOfFloatingInterest As Double
'// Initialise variables
IngLoop = 0
dblNumDaysInRoll $=0$
dblYearFraction = 0
dbIFloatingInterest $=0$
dbIPvOfFloatingInterest $=0$

## '// Loop through each date but one

For IngLoop $=2$ To rngDates.Cells.Count
dbINumDaysInRoll = rngDates.Cells(IngLoop) - rngDates.Cells(IngLoop - 1)
dblYearFraction = dbINumDaysInRoll / 365
dbIFloatingRate $=($ rngDFs.Cells(lngLoop -1) / rngDFs.Cells(lngLoop) -1$) /$ dblYearFraction + dblMargin
dblFloatingInterest $=$ rngNotional.Cells(IngLoop -1) * dbIFloatingRate * dblYearFraction
dbIPvOfFloatingInterest = dbIPvOfFloatingInterest + dblFloatingInterest * rngDFs.Cells(lngLoop)
Next IngLoop
// Return the value
GetPvOfFloatingLeg $=$ dbIPvOfFloatingInterest
End Function

## Application 4: Floating Rate Margin of an Interest Rate Swap

Given a set of dates, discount factors, notional profile and the fixed rate for a swap, the Newton-Raphson algorithm can be used to determine the margin on the floating leg of the swap:
'// Make the function visible to the whole project
Public Function SwapMargin( _
ByRef rngDates As Range, _
ByRef rngDFs As Range, _
ByRef rngNotional As Range,
ByRef dblFixedRate As Double) As Double

## '// Declare variables

Dim intCount As Integer
Dim dblAccuracy As Double
Dim dbIH As Double
Dim dbINextGuess As Double
Dim dblFunction As Double
Dim dbIFunctionH As Double
Dim dbIFirstDerivative As Double
'// Initialise variables
intCount $=0$
dbIAccuracy $=0.00001$
dbIH $=0.0000000001$
dblNextGuess $=0.005$
'// Newton-Raphson Algorithm
Do While intCount < 10
dblFunction = GetNpvOfSwap(rngDates, rngDFs, rngNotional, dblFixedRate, dbINextGuess)
If Abs(dblFunction) < dblAccuracy Then Exit Do
dblFunctionH = GetNpvOfSwap(rngDates, rngDFs, rngNotional, dblFixedRate, dblNextGuess + dbIH)
dblFirstDerivative $=($ dblFunctionH - dblFunction $) / \mathrm{dbIH}$
dblNextGuess = dbINextGuess - dblFunction / dbIFirstDerivative
intCount $=$ intCount +1
Loop
'// Return value
SwapMargin = dbINextGuess
End Function

NB: the above Floating Rate Margin code requires access to the private functions specified in the previous Fixed Rate code.

