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Newton-Raphson Approximation with Applications 

 
by Hammond Mason 

 

 
 

 

Consider the above function f(x).  The point at which f(x) intersects the x-axis is the value of x for which the 

function is zero.  This x value is called the root of f(x).  In the situation where f(x) represents the NPV of a set 

of cash flows discounted at a rate equal to x, the root of f(x) is commonly known as the Internal Rate of 

Return (IRR).  The root may be determined exactly if the equation for f(x) is known and is not of a very high 

order, eg. quadratic or cubic.  When the equation is unknown – as is often the case in finance – the root can 

be approximated using the Newton-Raphson algorithm. 

 

The Newton-Raphson Algorithm 

 

Knowing the equation for f(x) we find its first derivative f′(x) at a point estimated to be at or near the root.  In 

our example above, the ‘best guess’ value we chose was x1.  Knowing that f1′(x1) is equal to the gradient of 

the line tangential to f(x) at x1 we can easily find point x2 using the equation: 
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Knowing that f(x2) = 0 we can rearrange the above to: 
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And solve for x2.  We then repeat the process using x2 in order to find x3.  And so on.  Using this iterative 

method, we very quickly come close to finding the root of f(x).  We come close to the root but never actually 

reach it.  Our approximation will always need to come within a degree of error as specified by the user – eg. 

the number of decimal places, significant figures, etc. 

 

Solving Numerically Using the Newton-Raphson Algorithm 

 

If the equation for f(x) is not known, an alternative method is to estimate the derivative numerically using the 

formula: 
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Choosing a sufficiently small enough value for h allows the user to estimate f’(x) and, therefore, f1’(x1), f2’(x2) 

and f3’(x3) can all be determined thereby solving the problem of differentiating f(x) algebraically.   

 

The following example, which has a root of 12.19%, illustrates the approach: 
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Some of the values for the above function (which are needed for the ensuing calculations) are contained in 

the following table: 

x f(x) 

0.10000 1.18713 

0.10001 1.18654 

0.12012 0.08987 

0.12013 0.08936 

0.12188 0.00051 

0.12189 0.00001 
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Starting with a guess of 10% the resulting NPV is 1.18713 ie. the [x, y] point on the curve f(x) is [0.1, 1.18713].  

If we assume h = 0.00001 then our estimate for f1’(x1) is: 
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We now need to determine the data point [x2, 0]: 
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Using this value, f(x2) is 0.08987, ie. the point on the curve is [0.12012, 0.08987].  Our estimate for f2’(x2) is: 
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Hence, x3 is: 
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Again, f(0.12188) is 0.00051 so f3’(0.12188) is: 
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And x4 is: 
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Which is only a 0.00001 change from the previous iteration, ie. we are now accurate to 4 decimal places.  All 

this in only 4 iterations!  In fact, if we had chosen our beginning value (x1) as 0 instead of 0.1, the number of 

iterations required to achieve the same accuracy would have been only 6.  If we had chosen x1 =1 instead of 

0.1, the number of iterations would have been 7. 

 

The above iterative process can be modelled within a spreadsheet such as Microsoft Excel or OpenOffice Calc 

using data tables referencing the cell containing the NPV value.  However, care should be taken to ensure the 

data tables are accurate by repeatedly recalculating (pressing the F9 key in Excel) until there is no visible 

change.  A better solution is to codify the above algorithm (eg. using Excel’s VBA) thus avoiding the F9-

update problem.   

 

To simplify, the algorithm to be coded is: 

 

Let g = guess and let counter = 0 

Loop while c is less than the desired maximum number of iterations, eg. loop while c < 10 

 Let x = g – f(g) / f’(g) 

 If the absolute value of f(x) is less than the required accuracy, then exit the loop 

 Let g take on x’s value in readiness for the next cycle of the loop 

Increment counter by 1 

 Return to start of the loop for the next iteration 

 

Example code for three applications of the Newton-Raphson algorithm follow.   
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Application 1: Internal Rate Of Return 

 

The following Excel VBA code illustrates Newton-Raphson using Excel’s built-in NPV function to find the IRR: 

 
'// Make function visible to whole project 

Public Function InternalRateOfReturn( _ 

ByRef rngCashflows As Range, _ 

ByRef dblGuess As Double) As Double 

 

'// Declare local variables 

Dim intCount As Integer 

Dim dblPrecision As Double 

Dim dblNextGuess As Double 

Dim dblFunction As Double 

Dim dblH As Double 

Dim dblFunctionH As Double 

Dim dblFunctionDeriv As Double 

 

'// Initialise variables 

intCount = 0 

dblPrecision = 0.00001 

dblH = 0.0000000001 

dblNextGuess = dblGuess 

 

'// Perform Newton-Raphson algorithm 

Do While intCount < 10 

          dblFunction = Application.WorksheetFunction.NPV(dblNextGuess, rngCashflows) 

          If Abs(dblFunction) < dblPrecision Then 

                    Exit Do 

          End If 

          dblFunctionH = Application.WorksheetFunction.NPV(dblNextGuess + dblH, rngCashflows) 

          dblFunctionDeriv = (dblFunctionH - dblFunction) / dblH 

          dblNextGuess = dblNextGuess - dblFunction / dblFunctionDeriv 

          intCount = intCount + 1 

Loop 

 

'// Return value 

InternalRateOfReturn = dblNextGuess 

End Function 
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Application 2: Implied Volatility 

 

The following code uses the Newton-Raphson algorithm to find the volatility implied (“ImpliedVolatility”) by 

the Black-Scholes option pricing model (“BlackScholes”) from an observed option price: 

 
Public Function ImpliedVolatility( _ 

ByRef dblPrice As Double, _ 

ByRef dteValue As Date, _ 

ByRef dblSpot As Double, _ 

ByRef dblStrike As Double, _ 

ByRef dteExpiry As Date, _ 

ByRef dblRate As Double, _ 

ByRef strType As String) As Double 

 

'// Declare local variables 

Dim intCount As Integer 

Dim dblAccuracy As Double 

Dim dblNextGuess As Double 

Dim dblFunction As Double 

Dim dblH As Double 

Dim dblFunctionH As Double 

Dim dblFirstDerivative As Double 

 

'// Initialise variables 

intCount = 0 

dblAccuracy = 0.00001 

dblH = 0.0000000001 

dblNextGuess = 0.2 

 

'// Newton-Raphson Algorithm 

Do While intCount < 10 

          dblFunction = GetDiff("Premium", dteValue, dblSpot, dblStrike, dblNextGuess, dteExpiry, dblRate, strType, dblPrice) 

          If Abs(dblFunction) < dblAccuracy Then Exit Do 

          dblFunctionH = GetDiff("Premium", dteValue, dblSpot, dblStrike, dblNextGuess + dblH, dteExpiry, dblRate, strType, dblPrice) 

          dblFirstDerivative = (dblFunctionH - dblFunction) / dblH 

          dblNextGuess = dblNextGuess - dblFunction / dblFirstDerivative 

          intCount = intCount + 1 

Loop 

 

'// Return value 

ImpliedVolatility = dblNextGuess 

End Function 

 

 

Public Function GetDiff( _ 

ByRef strCalc As String, _ 

ByRef dteValue As Date, _ 

ByRef dblSpot As Double, _ 

ByRef dblStrike As Double, _ 

ByRef dblVol As Double, _ 

ByRef dteExpiry As Date, _ 

ByRef dblRate As Double, _ 

ByRef strType As String, _ 

ByRef dblPrice As Double) As Double 

 

'// Declare variables 

Dim dblCalculatedPremium As Double 

Dim dblObservedPrice As Double 

Dim dblDifference As Double 

 

'// Calculate difference between the theoretical (calculated) option premium and the actual (observed) price 

dblCalculatedPremium = BlackScholes(strCalc, dteValue, dblSpot, dblStrike, dblVol, dteExpiry, dblRate, strType) 

dblObservedPrice = dblPrice 

dblDifference = dblCalculatedPremium - dblObservedPrice 

 

'// Return value 

GetDiff = dblDifference 

End Function 
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Public Function BlackScholes( _ 

ByRef strCalc As String, _ 

ByRef dteValue As Date, _ 

ByRef dblSpot As Double, _ 

ByRef dblStrike As Double, _ 

ByRef dblVol As Double, _ 

ByRef dteExpiry As Date, _ 

ByRef dblRate As Double, _ 

ByRef strType As String) As Double 

 

'// Initialise variables 

Dim dblTerm As Double 

Dim dblD1 As Double 

Dim dblD2 As Double 

Dim dblN1 As Double 

Dim dblN2 As Double 

Dim dblPremium As Double 

Dim dblDelta As Double 

Dim dblGamma As Double 

Dim dblVega As Double 

Dim dblTheta As Double 

Dim dblRho As Double 

Dim dblPDF As Double 

Dim dblThetaCommon As Double 

Dim dblRhoCommon As Double 

 

'// Calculate re-useable variables 

dblTerm = (dteExpiry - dteValue) / 365 

dblD1 = (Log(dblSpot / dblStrike) + (dblRate + 0.5 * dblVol ^ 2) * dblTerm) / (dblVol * Sqr(dblTerm)) 

dblD2 = dblD1 - dblVol * Sqr(dblTerm) 

dblN1 = Application.WorksheetFunction.NormSDist(dblD1) 

dblN2 = Application.WorksheetFunction.NormSDist(dblD2) 

dblPDF = Exp(-0.5 * dblD1 ^ 2) / Sqr(2 * Application.WorksheetFunction.Pi) 

dblGamma = dblPDF / (dblSpot * dblVol * Sqr(dblTerm)) 

dblVega = dblPDF * dblSpot * Sqr(dblTerm) 

dblThetaCommon = dblSpot * dblPDF * dblVol / (2 * Sqr(dblTerm)) 

dblRhoCommon = dblStrike * Exp(-dblRate * dblTerm) * dblTerm 

 

'// Calculate Price (Premium) and the Greeks 

Select Case strType 

          Case "Call" 

                    dblPremium = dblSpot * dblN1 - dblStrike * Exp(-dblRate * dblTerm) * dblN2 

                    dblDelta = dblN1 

                    dblTheta = dblThetaCommon + dblStrike * Exp(-dblRate * dblTerm) * dblRate * (dblN2) 

                    dblRho = dblRhoCommon * (dblN2) 

          Case "Put" 

                    dblPremium = -dblSpot * (1 - dblN1) + dblStrike * Exp(-dblRate * dblTerm) * (1 - dblN2) 

                    dblDelta = dblN1 - 1 

                    dblTheta = dblThetaCommon + dblStrike * Exp(-dblRate * dblTerm) * dblRate * (dblN2 - 1) 

                    dblRho = dblRhoCommon * (dblN2 - 1) 

End Select 

           

'// Return value 

Select Case strCalc 

          Case "Premium" 

                    BlackScholes = dblPremium 

          Case "Delta" 

                    BlackScholes = dblDelta 

          Case "Gamma" 

                    BlackScholes = dblGamma 

          Case "Vega" 

                    BlackScholes = dblVega 

          Case "Theta" 

                    BlackScholes = dblTheta 

          Case "Rho" 

                    BlackScholes = dblRho 

End Select 

End Function 

 



Newton-Raphson Approximation 

 

 

8 

Application 3: Fixed Rate of an Interest Rate Swap 

 

Given a set of dates, discount factors, a notional profile and the floating leg margin for an interest rate swap, 

the Newton-Raphson algorithm can be used to determine the implied fixed rate: 

 
'// Make the function visible to the whole project 

Public Function SwapRate( _ 

ByRef rngDates As Range, _ 

ByRef rngDFs As Range, _ 

ByRef rngNotional As Range, _ 

ByRef dblMargin) As Double 

 

'// Declare variables 

Dim intCount As Integer 

Dim dblAccuracy As Double 

Dim dblH As Double 

Dim dblNextGuess As Double 

Dim dblFunction As Double 

Dim dblFunctionH As Double 

Dim dblFirstDerivative As Double 

 

'// Initialise variables 

intCount = 0 

dblAccuracy = 0.00001 

dblH = 0.0000000001 

dblNextGuess = 0.05 

 

'// Newton-Raphson Algorithm 

Do While intCount < 10 

          dblFunction = GetNpvOfSwap(rngDates, rngDFs, rngNotional, dblNextGuess, dblMargin) 

          If Abs(dblFunction) < dblAccuracy Then Exit Do 

          dblFunctionH = GetNpvOfSwap(rngDates, rngDFs, rngNotional, dblNextGuess + dblH, dblMargin) 

          dblFirstDerivative = (dblFunctionH - dblFunction) / dblH 

          dblNextGuess = dblNextGuess - dblFunction / dblFirstDerivative 

          intCount = intCount + 1 

Loop 

 

'// Return value 

SwapRate = dblNextGuess 

End Function 

 

 

Private Function GetNpvOfSwap( _ 

ByRef rngDates As Range, _ 

ByRef rngDFs As Range, _ 

ByRef rngNotional As Range, _ 

ByRef dblFixedRate As Double, _ 

ByRef dblMargin) As Double 

 

'// Declare variables 

Dim dblPvOfFixedLeg As Double 

Dim dblPvOfFloatingLeg As Double 

Dim dblNpvOfSwap As Double 

 

'// Calculate PV of legs and NPV of swap 

dblPvOfFixedLeg = GetPvOfFixedLeg(rngDates, rngDFs, rngNotional, dblFixedRate) 

dblPvOfFloatingLeg = GetPvOfFloatingLeg(rngDates, rngDFs, rngNotional, dblMargin) 

dblNpvOfSwap = dblPvOfFixedLeg - dblPvOfFloatingLeg 

 

'// Return value 

GetNpvOfSwap = dblNpvOfSwap 

End Function 

 

 

Private Function GetPvOfFixedLeg( _ 

ByRef rngDates As Range, _ 

ByRef rngDFs As Range, _ 

ByRef rngNotional As Range, _ 

ByRef dblFixedRate As Double) As Double 
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'// Declare variables 

Dim lngLoop As Long 

Dim dblFixedInterest As Double 

Dim dblPvOfFixedInterest As Double 

 

'// Initialise variables 

lngLoop = 0 

dblFixedInterest = 0 

dblPvOfFixedInterest = 0 

 

'// Loop through each date but one 

For lngLoop = 2 To rngDates.Cells.Count 

          dblFixedInterest = rngNotional.Cells(lngLoop - 1) * dblFixedRate * (rngDates.Cells(lngLoop) - rngDates.Cells(lngLoop - 1)) / 365 

          dblPvOfFixedInterest = dblPvOfFixedInterest + dblFixedInterest * rngDFs.Cells(lngLoop) 

Next lngLoop 

 

'// Return the value 

GetPvOfFixedLeg = dblPvOfFixedInterest 

End Function 

 

 

Private Function GetPvOfFloatingLeg( _ 

ByRef rngDates As Range, _ 

ByRef rngDFs As Range, _ 

ByRef rngNotional As Range, _ 

ByRef dblMargin) As Double 

 

'// Declare variables 

Dim lngLoop As Long 

Dim dblNumDaysInRoll As Double 

Dim dblYearFraction As Double 

Dim dblFloatingRate As Double 

Dim dblFloatingInterest As Double 

Dim dblPvOfFloatingInterest As Double 

 

'// Initialise variables 

lngLoop = 0 

dblNumDaysInRoll = 0 

dblYearFraction = 0 

dblFloatingInterest = 0 

dblPvOfFloatingInterest = 0 

 

'// Loop through each date but one 

For lngLoop = 2 To rngDates.Cells.Count 

          dblNumDaysInRoll = rngDates.Cells(lngLoop) - rngDates.Cells(lngLoop - 1) 

          dblYearFraction = dblNumDaysInRoll / 365 

          dblFloatingRate = (rngDFs.Cells(lngLoop - 1) / rngDFs.Cells(lngLoop) - 1) / dblYearFraction + dblMargin 

          dblFloatingInterest = rngNotional.Cells(lngLoop - 1) * dblFloatingRate * dblYearFraction 

          dblPvOfFloatingInterest = dblPvOfFloatingInterest + dblFloatingInterest * rngDFs.Cells(lngLoop) 

Next lngLoop 

 

'// Return the value 

GetPvOfFloatingLeg = dblPvOfFloatingInterest 

End Function 
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Application 4: Floating Rate Margin of an Interest Rate Swap 

 

Given a set of dates, discount factors, notional profile and the fixed rate for a swap, the Newton-Raphson 

algorithm can be used to determine the margin on the floating leg of the swap: 

 
'// Make the function visible to the whole project 

Public Function SwapMargin( _ 

ByRef rngDates As Range, _ 

ByRef rngDFs As Range, _ 

ByRef rngNotional As Range, _ 

ByRef dblFixedRate As Double) As Double 

 

'// Declare variables 

Dim intCount As Integer 

Dim dblAccuracy As Double 

Dim dblH As Double 

Dim dblNextGuess As Double 

Dim dblFunction As Double 

Dim dblFunctionH As Double 

Dim dblFirstDerivative As Double 

 

'// Initialise variables 

intCount = 0 

dblAccuracy = 0.00001 

dblH = 0.0000000001 

dblNextGuess = 0.005 

 

'// Newton-Raphson Algorithm 

Do While intCount < 10 

          dblFunction = GetNpvOfSwap(rngDates, rngDFs, rngNotional, dblFixedRate, dblNextGuess) 

          If Abs(dblFunction) < dblAccuracy Then Exit Do 

          dblFunctionH = GetNpvOfSwap(rngDates, rngDFs, rngNotional, dblFixedRate, dblNextGuess + dblH) 

          dblFirstDerivative = (dblFunctionH - dblFunction) / dblH 

          dblNextGuess = dblNextGuess - dblFunction / dblFirstDerivative 

          intCount = intCount + 1 

Loop 

 

'// Return value 

SwapMargin = dblNextGuess 

End Function 

 

NB: the above Floating Rate Margin code requires access to the private functions specified in the previous 

Fixed Rate code. 


